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ABSTRACT

The present paper discusses a versatile three -parameter distribution from the

Yun-G family. The important statistical properties like moments, stochastic order-

ing, and entropy are studied in this paper. Two characterizations of the distri-

bution are obtained using the hazard rate function and truncated moments. The

statistical inference of the distribution is studied by executing five different meth-

ods of parameter estimation, such as maximum likelihood estimation, ordinary least

square method, weighted least square method, Cramér-von Mises method, and An-

derson–Darling method. To study the fitting and applicability of the proposed dis-

tribution, two real life data sets from the engineering sector were analyzed and the

proposed distribution is found to be more appropriate than the other competitive

distributions. A comprehensive simulation study is also conducted and it showed

the accuracy and consistency of the estimation techniques.
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1 Introduction

In this data-driven era, the velocity of data and the complexity of its organization make

flexible distributions essential. The invention of normal distribution got wide recogni-

tion due to its simple properties and central limit theorem. However, researchers face

a challenge when it comes to practical applications of skewed or extremely valued data.

Discoveries of the new family of distributions have shown how it can be used to model

data in applied science, especially in engineering. The operational and reliability data

sets are crucial for developing predictive models, validating simulations, training ma-

chine learning algorithms, and making data-driven decisions in engineering projects.

Many families of distributions have been widely used for data modeling across various

domains during the last few decades, see Marshall and Olkin (1997), Alzaatreh et al.

(2013), and among others.

The Fréchet distribution or the inverse Weibull distribution was introduced by French

Mathematician Maurice Fréchet in 1927. This distribution is a special case of the gen-

eralized extreme value distribution. Thus, it is also known as extreme value distribution

Type II. This distribution is commonly used to model a wide range of real phenomena

with heavy tails like sea wave dynamics, earthquakes, engineering, actuarial science, and

other events. The distribution function and density function of Fréchet distribution are,

respectively,

Gσ,λ(x) = e−(
σ
x )

λ

, x > 0, (1.1)

and

gσ,λ(x) = λσλx−(λ+1)e−(
σ
x )

λ

, x > 0, (1.2)

where σ > 0 is the scale parameter and λ > 0 is the shape parameter.

From the literature, it is clear that conventional probability distributions like Fréchet

are not universally suitable for modeling all types of real world phenomena. Hence, it is

crucial to suggest novel distributions that offer enhanced flexibility in representing real

world data sets. This can be achieved by expanding the traditional distributions through

the introduction of interpretable parameters or by creating new families of distribution.

The realm of statistical literature encompasses numerous extensions of the Fréchet dis-

tributions. Recent generalizations of Fréchet distributions are; Generalization of Fréchet

distribution by Jayakumar and Babu (2019), cubic transmuted Fréchet distribution by
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Shalabi (2020), the generalized odd log-logistic Fréchet distribution by Abd El Khalek

and Raina (2022), the inverted Gompertz-Fréchet distribution proposed by Akarawak et

al. (2023), Marshall-Olkin exponentiated Fréchet distribution by Aurise et al. (2023)

and the novel Kumaraswamy power Fréchet distribution by Najwan et al. (2023), and

among others.

The current study is inspired by a newly proposed Yun-G family of distribution by

Chesneau et al. (2021) leveraging a mathematical transform introduced by Yun (2014).

The unique features of this transform such as continuous derivatives, and simple expres-

sion of the inverse function serve as key motivators for this study.

Yun transform is defined as;

Tα(x) =
(1 + x)α − (1− x)α

(1 + x)α + (1− x)α
, x ∈ [0, 1], α ≥ 1, (1.3)

with Tα(x) = 0 for x < 0 and Tα(x) = 1 for x > 1 . Then, Tα(x) has the properties of a

distribution function.

The probability density function (pdf) is given by;

tα(x) = 4α
(1− x2)α−1

((1 + x)α + (1− x)α)2
, x ∈ [0, 1]. (1.4)

The hazard rate function (hrf) is written as

hα(x) =
tα(x)

1− Tα(x)
= 2α

(1 + x)α

(1− x2)((1 + x)α + (1− x)α)
. (1.5)

The quantile function is obtained through functional inversion of Tα(x). The quantile

function of the Yun-G family is given by;

T−1
α (y) =

(1 + y)1/α − (1− y)1/α

(1 + y)1/α + (1− y)1/α
. (1.6)

The focus of this research lies in the under-explored potential of the Yun-G family of

distributions. Hence, this study aims to extend the Fréchet distribution to broaden its

utility in modeling failure data of components and maintenance data. Therefore, the

present study proposed a versatile distribution from the Yun-G family called the Yun-

Fréchet distribution (YFD). We also explored its general statistical properties and used

five different methods of parameter estimation.

The paper is organized as follows: In Section 2 the model construction and basic statisti-

cal properties are discussed. Section 3 is devoted to characterizations of the distribution
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based on hazard function and truncated moments. In Section 4 five different methods of

parametric estimation are studied. A simulation study has been done in Section 5. The

flexibility and utility of the proposed model are studied in Section 6 and conclusions of

this study are given in Section 7.

2 Yun Fréchet Distribution

In this section, we introduce a flexible distribution from the Yun-G family, based on

Fréchet distribution.

Suppose X is a random variable that follows a YFD with parameters α, σ, and λ.

The distribution function of X is given by,

F (x) =

(
1 + e−(

σ
x )

λ
)α

−
(
1− e−(

σ
x )

λ
)α

(
1 + e−(

σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α ; x > 0, α ≥ 1, σ > 0, λ > 0. (2.1)

The corresponding pdf of X can be obtained as follows;

f(x) = 4αλσλ

x−(λ+1)e−(
σ
x )

λ
(
1− e−2(σ

x )
λ
)α−1

((
1 + e−(

σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α)2 ; x > 0, α ≥ 1, σ > 0, λ > 0.

(2.2)
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(a) (b)

(c) (d)

Figure 1: Plots of the pdf of the YFD for various parameter values.

From Figure 1 the pdf of YFD can be unimodal, increasing-decreasing, and right-skewed.

The hrf of the YFD is given by;

h(x) = 2αλσλ

x−(λ+1)e−(
σ
x )

λ
(
1− e−(

σ
x )

λ
)α

(
1− e−(

σ
x )

2λ
)[(

1 + e−(
σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α] . (2.3)
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(a) (b)

(c) (d)

Figure 2: Plots of the hrf of the YFD for various parameter values.

Figure 2 shows the hazard function plots of YFD for different parameters and they show

decreasing, increasing-decreasing, constant and unimodal behaviour.

The quantile function of the YFD is given by;

F−1(y) = − σ

log
[
(1+y)1/α−(1−y)1/α

(1+y)1/α+(1−y)1/α

]1/λ , (2.4)

which will be used later for simulation purposes.
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2.1 General properties of YFD

2.1.1 Moments

Moments are used to study the statistical characteristics of the distribution, such as
mean, variance, skewness, and kurtosis. Moments of YFD random variable can be cal-
culated as follows;

v′r = E(Xr) =

∫ ∞

0

xr
4αλσλx−(λ+1)e−(

σ
x )

λ (
1− e−2(σ

x )
λ)α−1

(
1 + e−(

σ
x )

λ)α
+
(
1− e−(

σ
x )

λ)α dx ≈
K∑

k,ℓ,m=0

bk,ℓ,mIℓ,m(Q,G),

where K might be any large integer of choice, bk,ℓ,m = ak

(
αk

ℓ

)(
−αk

m

)
(−1)ℓ(ℓ +

m), a0 = 1 and ak = 2(−1)k for k ≥ 1, and Iℓ,m(Q,G) can be expressed as;

Iℓ,m(Q,G) =

∫ ∞

0

xr [G(x)]ℓ+m−1 g(x) dx = λσλ

∫ ∞

0

xr

(
e−(

σ
x )

λ
)ℓ+m−1

x−(λ+1)e−(
σ
x )

λ

dx.

The mean, standard deviation, variance, skewness, and kurtosis for the YFD can be

computed using the raw moments. With the help of R software, we computed them

using the standard definitions.

The calculated values are presented in Table 1. It shows that the YFD is suitable for

over-dispersed or under-dispersed data. The skewness and kurtosis values show positive

skewness and leptokurtic behaviour. Also, the discussed moments for YFD decrease as

the α value increases.
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Table 1: Moment characteristics of the YFD for various parameter values.

Parameters α → 2 4 5.5 6

Mean 4.8777 3.6809 3.3694 3.2980

σ = 5 Variance 5.3667 0.4892 0.5565 177.3842

λ = 2 Skewness 4.9050 1.3473 0.8911 0.7980

Kurtosis 743.8108 7.9976 5.2109 4.8035

Mean 0.7782 0.5971 0.5487 0.5377

σ = 0.8 Variance 0.1195 0.0225 0.0133 0.0118

λ = 2.1 Skewness 4.2842 1.2782 0.8461 0.7569

Kurtosis 204.8286 7.4824 5.0186 4.6500

Mean 2.2291 1.7557 1.6274 1.5977

σ = 2.3 Variance 0.7712 0.1602 0.0972 0.0861

λ = 2.3 Skewness 3.4913 1.1639 0.7699 0.6870

Kurtosis 64.1014 6.7145 4.7186 4.4092

Mean 9.0623 8.2035 7.9457 7.8838

σ = 9.3 Variance 1.9334 0.6440 0.4409 0.4016

λ = 5.2 Skewness 1.4282 0.6039 0.3639 0.3086

Kurtosis 8.0730 4.1919 3.6116 3.5104

2.1.2 Stochastic ordering

Stochastic ordering is a useful technique for comparing random variables in terms of

statistical functions in distribution theory, see Shaked and Shanthikumar (2007) and

Yaming (2009).

Let Xi be random variables with distribution functions Fi(X) and density functions

fi(x), the reliability functions be F̄i(x), then we say that X1 is smaller than X2 if;

� F̄1(x) ≤ F̄2(x) for all x,=⇒ X1 ≤st X2 (Stochastic order).

�

f1(x)
F̄1(x)

≥ f2(x)
F̄2(x)

for all x,=⇒ X1 ≤hr X2 (Hazard rate order).

�

f1(x)
F̄1(x)

≥ f2(x)
F̄2(x)

for all x,=⇒ X1 ≤rh X2 (Reversed hazard rate order).

�

f1(x)
f2(x)

is a monotonic decreasing function for all x,=⇒ X1 ≤lr X2 (Likelihood ratio
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order).

Also, we have X1 ≤lr X2 implies X1 ≤hr X2 and X1 ≤rh X2 which implies X1 ≤st X2.

Suppose the densities of X1 and X2 are, respectively,

f1(x) = 4α1λσ
λ

x−(λ+1)e−(
σ
x )

λ
(
1− e−2(σ

x )
λ
)α1−1

((
1 + e−(

σ
x )

λ
)α1

+

(
1− e−(

σ
x )

λ
)α1

)2 ; x > 0, and

f2(x) = 4α2λσ
λ

x−(λ+1)e−(
σ
x )

λ
(
1− e−2(σ

x )
λ
)α2−1

((
1 + e−(

σ
x )

λ
)α2

+

(
1− e−(

σ
x )

λ
)α2

)2 ; x > 0.

Then,

f1(x)

f2(x)
=

α1

α2

((
1 + e−(

σ
x )

λ
)α2

+

(
1− e−(

σ
x )

λ
)α2

)2(
1− e−2(σ

x )
λ
)α1−α2

((
1 + e−(

σ
x )

λ
)α1

+

(
1− e−(

σ
x )

λ
)α1

)2 .

For α1 > α2,
(
f1(x)
f2(x)

)′
< 0, which satisfies X1 ≤lr X2.

2.1.3 Entropy

It is a common fact that every statistical distribution has a lack of certainty. Here,

entropy acts as a measure of uncertainty. The concept of entropy was introduced by

Shannon (1948). If X is a non-negative continuous random variable that has pdf f(x),

and cdf F (x) then Shannon entropy of X is defined as;

S(X) = −
∫ ∞

0
f(x)log(f(x))dx.

The Rényi Entropy Rényi (1961) is defined by,

Hθ(X) =
1

1− θ
ln

(∫ ∞

0
f(x)θdx

)
; θ > 0(̸= 1).
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Using Eq.2.2 in the above expression, the Rényi entorpy of YFD can be written as;

Hθ(X) =
1

1− θ
log


∫ ∞

0


4αλσλx−(λ+1)e−(

σ
x )

λ
(
1− e−2(σ

x )
λ
)(α−1)

((
1 + e−(

σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α)2


θ

dx



=
1

1− θ
log(4αλσλ)θ +

1

1− θ
log


∫ ∞

0


x−(λ+1)e−(

σ
x )

λ
(
1− e−2(σ

x )
λ
)(α−1)

((
1 + e−(

σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α)2


θ

dx


=

θ

1− θ
log(4) +

θ

1− θ
log(α) +

θ

1− θ
log(λ) +

θλ

1− θ
log(σ) +

1

1− θ
log(U),

where

U =

∫ ∞

0

x−θ(λ+1)e−θ(σ
x )

λ
(
1− e−2(σ

x )
λ
)θ(α−1)

((
1 + e−(

σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α)2θ

dx.

Proposition 2.1. We have

U =

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
θ(α− 1)

k

)(
−2θ

l

)(
−α(2θ + k)

m

)(
−αk

n

)

(−1)k
∫ ∞

0
x−(θ+1)e−(2θ(α−1)+m+n)(σ

x )
λ

.

Proof. Using the binomial expansions successively,

x−θ(λ+1)e−θ(σ
x )

λ
(
1− e−2(σ

x )
λ
)θ(α−1)((

1 + e−(
σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α)−2θ

=

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
θ(α− 1)

k

)(
−2θ

l

)(
−α(2θ + k)

m

)(
−αk

n

)
(−1)kx−(θ+1)e−(2θ(α−1)+m+n)(σ

x )
λ

.
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Therefore,

U =

∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

(
θ(α− 1)

k

)(
−2θ

l

)(
−α(2θ + k)

m

)(
−αk

n

)

(−1)k
∫ ∞

0
x−(θ+1)e−(2θ(α−1)+m+n)(σ

x )
λ

.

This ends the proof of Proposition 2.1.

3 Characterizations of YFD

Understanding and accurately characterizing probability distributions is important in

various fields, enabling insights into diverse phenomena. In this section, we established

the characterizations of YFD based on hazard function and truncated moments. Over

the years, many researchers have studied the different techniques of characterization of

continuous probability distributions such as Glänzel (1987, 1988) and Hamedani (1993).

3.1 Characterization based on hazard function

The hrf h(x) of a twice differentiable distribution function F (x) and pdf f(x) satisfies

the first-order differential equation,

f ′(x)

f(x)
=

h′(x)

h(x)
− h(x). (3.1)

For many univariate continuous distributions, this is the only characterization available

in terms of the hazard function. Hamedani and Ahsanullah (2005) characterized certain

widely recognized distributions based on the hazard function. The following character-

ization establishes a non-trivial characterization of YFD, when α = 1, which is not of

the above trivial form.

Theorem 3.1. Let X : Ω → (0,∞) be a continuous random variable. The pdf of X is

Eq.2.2 if and only if its hazard function h(x) satisfies the differential equation

xλ+1h′(x) + (λ+ 1)xλh(x) =
d

dx

λσλe−(
σ
x )

λ

1− e−(
σ
x )

λ

 . (3.2)



Yun-G family of distributions and its application 63

Proof. When α = 1, the pdf f(x) and hrf h(x) of X are respectively

f(x) = λσλx−(λ+1)e−(
σ
x )

λ

, (3.3)

and

h(x) =
λσλx−(λ+1)e−(

σ
x )

λ

1− e−(
σ
x )

λ . (3.4)

Then we have

f ′(x)

f(x)
= −(λ+ 1)

x
+ λσλx−(λ+1). (3.5)

Using Eq.3.1 we can write,

h′(x) + h(x)
(λ+ 1)

x
= −λ2σ2λx−2(λ+1)e−(

σ
x )

λ(
1− e−(

σ
x )

λ
)2 ,

which implies,

xλ+1h′(x) + (λ+ 1)xλh(x) = −λ2σ2λx−2(λ+1)e−(
σ
x )

λ(
1− e−(

σ
x )

λ
)2 .

Now, Eq.3.2 holds, then

d

dx

(
xλ+1h(x)

)
=

d

dx

λσλe−(
σ
x )

λ

1− e−(
σ
x )

λ



from which we obtain

h(x) =
λσλxλ+1e−(

σ
x )

λ

1− e−(
σ
x )

λ ,

which is the hrf of YFD when α = 1.
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3.2 Characterization based on truncated moments

The exploration of characterizing probability distributions through truncated moments

originated from the research by Galambos and Kotz (1978). Subsequent advancements

in this area were made by various scholars and researchers. Notable contributors to the

development of characterizations using truncated moments include Kotz and Shanbag

(1980), Glänzel et al. (1984) and Glänzel (1987,1990). The YFD is characterized through

truncated moments. This is developed based on the Theorem 3.2 of Glänzel (1987), which

is stated as follows,

Theorem 3.2. Let (Ω,Σ, P ) be a given probability space, and let H = [a, b] be an in-

terval for some a < b (a = ∞, b = −∞ might as well be allowed). Let X : Ω → H be a

continuous random variable with distribution function G(x) and let q1 and q2 be two real

functions defined on H such that

E[q1(X)|X ≥ x] = E[q2(X)|X ≥ x]η(x), x ∈ H

is defined with some real function η. Assume that q1, q2 ∈ C1(H), η ∈ C2(H), and G(x)

is a twice continuously differentiable and strictly monotone function on the set H. Fi-

nally, assume that the equation q2η = q1 has no real solution in the interior of H. Then

G is uniquely determined by the functions q1, q2 and η. In particular,

G(x) =

∫
a
xC

∣∣∣∣∣ η
′
(u)

η(u)q2(u)− q1(u)

∣∣∣∣∣ e−s(u)

where the function s is a solution of the differential equation s′ = η′q2
ηq2−q1

and C is a

constant chosen to make
∫
H dG = 1.

The above theorem has the advantage that the cdf G is not required to have a closed

form and is given in terms of an integral whose integrand depends on the solution of

a first-order differential equation, which can serve as a bridge between probability and

differential equation.

Theorem 3.3. Let X : Ω → (0,∞) be a continuous random variable, and let

q2(x) =

((
1 + e−(

σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α)2(

1− e−2(σ
x )

λ
)α−1

and q1(x) = q2(x)e
−(σ

x )
λ

for x > 0. The pdf of X is Eq.2.2 if and only if the function η defined in Theorem 3.2

has the form



Yun-G family of distributions and its application 65

η(x) =
1

2
e−(

σ
x )

λ

, x > 0. (3.6)

Proof. Let X have pdf Eq.2.2, then

(1−G(x))E[q2(X)|X ≥ x] = 8αλσλ

x−(λ+1)e−(
σ
x )

λ
(
1− e−(

σ
x )

λ
)α

(
1 + e−(

σ
x )

λ
)α

−
(
1− e−(

σ
x )

λ
)α , x > 0,

(1−G(x))E[q2(X)|X ≥ x] = 8αλσλ

x−(λ+1)e−2(σ
x )

λ
(
1− e−(

σ
x )

λ
)α

(
1 + e−(

σ
x )

λ
)α

−
(
1− e−(

σ
x )

λ
)α , x > 0,

and then

η(x)q2(x)− q1(x) = −1

2

((
1 + e−(

σ
x )

λ
)α

+

(
1− e−(

σ
x )

λ
)α)2(

1− e−2(σ
x )

λ
)α−1

< 0, for x > 0.

Conversely, if η is given as Eq.3.6, then

s′(x) =
η′(x)q2(x)

η(x)q2(x)− q1(x)
= λσλx−(λ+1), x > 0,

and hence,

s(x) =
(σ
x

)λ
or

e−s(x) = e−(
σ
x )

λ

.

Now, using Theorem 3.2, X has the pdf Eq.2.2.

4 Estimation Methods

In this section we describe five methods of estimation, such as maximum likelihood

method, ordinary least square method, weighted least square method, Cramér-Von Mises

method, and Anderson-Darling method for estimating the parameters α, σ and λ of YFD.
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4.1 Method of maximum Likelihood Estimation

It is well-known that the method of maximum likelihood is the most popular method

in statistical inference Casella and Berger (2002), and its significance because it in-

cludes the probabilistic structure that the considered distribution’s pdf represents. Let

x1, x2, . . . , xn are the observed values of a random sample from the YFD. The log-

likelihood for θ = (α, σ, λ)T based on the mentioned values is given by;

logL(α, λ, σ) =n log(4) + n log(α) + n log(λ) + nλ log(σ)

−(λ+ 1)
n∑

i=1

log(xi) +
n∑

i=1

(
σ

xi

)λ

+ (α− 1)
n∑

i=1

log

(
1− e

−2
(

σ
xi

)λ)

−2
n∑

i=1

log

[(
1 + e

−
(

σ
xi

)λ)α

+

(
1− e

−
(

σ
xi

)λ)α
]
.

The partial derivatives of this function with respect to α, λ and σ are given by;

∂ log L(α, λ, σ)

∂α
=
(n
α

)
+

n∑
i=1

log

(
1− e

−2
(

σ
xi

)λ
)
−

2

n∑
i=1

(
1 + e

−
(

σ
xi

)λ
)α

log

(
1 + e

−
(

σ
xi

)λ
)
+

(
1− e

−
(

σ
xi

)λ
)α

log

(
1− e

−
(
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(4.1)

∂ log L(α, λ, σ)
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and
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Maximum Likelihood Estimate (MLE) θ̂ = (α̂, σ̂, λ̂)T of θ = (α, σ, λ)T can be obtained

by solving simultaneously the following normal equations.

∂ logL(α, λ, σ)

∂α
= 0;

∂ logL(α, λ, σ)

∂σ
= 0;

∂ logL(α, λ, σ)

∂λ
= 0.

We propose other methods of estimation to the distribution parameters and assess their

performance with the MLE method via simulation.

Theorem 4.1. From Eq.4.1, let f1(α, σ, λ) = ∂ logL(α, λ, σ)/∂λ. Then, there exists a

solution for f1(α, σ, λ) = 0 for α ≥ 1 and the solution is unique when −n/2α2 < S1,

where
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Since σ and λ are given, then the limiting values of f1(α, σ, λ) are

lim
α→∞
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,

and we can show that it approaches a positive value numerically. Thus there exists at
least one root say α̂ ∈ (1,∞).
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To show uniqueness, we have to show that ∂ logL(α, λ, σ)/∂α < 0, that is,
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that is, − n
2α2 < S1. Hence, there exists a solution for f1(α, σ, λ) = 0, and the root is

unique when − n
2α2 < S1.

Theorem 4.2. From Eq.4.2, let f2(α, σ, λ) = ∂ logL(α, λ, σ)/∂σ. Then, there exists a

solution for f2(α, σ, λ) = 0 for σ ∈ (0,∞) and the solution is unique when λ2S2 + S3 >

2λ2αS4.

Proof. We have
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Since α and λ are given, then the limiting values of f2(α, σ, λ) are

lim
σ→∞

f2(α, σ, λ) = −∞,

and

lim
σ→0

f2(α, σ, λ) > 0,

and we can show that it approaches a positive value numerically. Thus, at least one root
say σ̂ ∈ (0,∞) exists. To show uniqueness, we have to show that ∂ logL(α, λ, σ)/∂σ < 0,
that is,
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− λ2

σ

n∑
i=1

m− 2(α− 1)λ

σ

n∑
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i.e.,
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λ2S2 + S3 > 2λ2αS4,

Hence, there exists a solution for f2(α, σ, λ) = 0, and the root is unique when λ2S2+S3 >

2λ2αS4.

Theorem 4.3. From Eq.4.3, let f3(α, σ, λ) = ∂ logL(α, λ, σ)/∂λ. Then, there exists a

solution for f3(α, σ, λ) = 0, and the solution is unique when n
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The limiting values of f3(α, σ, λ) as λ −→ 0 and λ −→ ∞ are, respectively, limλ→∞ f3(α, σ, λ) =

−∞ and limλ→0 f3(α, σ, λ) = ∞. Thus, there exists at least one root, say λ̂ ∈ (0,∞).
To show uniqueness, we have to show that ∂ logL(α, λ, σ)/∂λ < 0, that is,
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Hence, there exists a solution for f3(α, σ, λ) = 0, and the root is unique when n
λ2 + S5 >

2(α− 1)S6 + 2αS7.

4.2 Method of Ordinary least squares

This method of estimation was introduced by James et al. (1988). The ordinary least

squares (OLS) estimators can be obtained by minimizing

n∑
i=1

[
F (xi:n)−

i

n+ 1

]2
with respect to α, σ, and λ.



Yun-G family of distributions and its application 71

That is θ̂ = (α̂, σ̂, λ̂)T can be obtained by minimizing;

n∑
i=1


(
1 + e

−
(

σ
xi

)λ)α

−
(
1− e

−
(

σ
xi

)λ)α

(
1 + e

−
(

σ
xi

)λ)α

+

(
1− e

−
(

σ
xi

)λ)α − i

n+ 1


2

with respect to α, σ, and λ.

4.3 Method of Weighted least squares

The weighted least square (WLS) estimator of YFD parameters are obtained by mini-
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by minimizing this equation with respect to α, σ, and λ, we obtain α̂WLS , σ̂WLS , and

λ̂WLS .

4.4 Cramér-Von Mises method

This is another approach for estimating the parameters proposed by Macdonald (2018).

Cramér-Von Mises (CVM) estimators are also known as minimum distance estimators.

The CVM estimators are obtained by minimizing,

c(α, σ, λ) =
1

12n
+

n∑
i=1

[
F (xi)−

2i− 1

2n

]2
.



72 Journal of the Kerala Statistical Association

These estimators can also be obtained by solving the following non-linear equations.
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4.5 Anderson-Darling method

The Anderson-Darling test was introduced by Anderson and Darling Anderson and Dar-

ling (1952). The estimators are obtained by minimizing

A(α, σ, λ) = −n− 1

n
+

n∑
i=1

(2i− 1)
[
logF (x1:n|α, σ, λ) + logF̄ (x1:n|α, σ, λ)

]
.

The Anderson-Darling (AD) estimates of YFD parameters can also be obtained by solv-

ing the following non-linear equations.

n∑
i=1
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]
= 0,
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where ∆1(xi|α, σ, λ), ∆2(xi|α, σ, λ), and ∆3(xi|α, σ, λ) are discussed in Section 3.4.

5 Simulation

To determine the accuracy of parametric estimation, a Monte Carlo simulation is con-

ducted in this section. Five different estimates of YFD parameters were examined in

this simulation study. Using the quantile function of YFD given by Eq.2.4, we gener-

ated a random sample of observation for sizes n = 50, 100, 200, 300, and 500 with

N = 1000 replications. The two combinations of parameter values considered are;

α = 5, σ = 2, λ = 1 and α = 1.2, σ = 2.5, λ = 0.2. The numerical outcomes are

evaluated using R statistical Programming language with the widely used optimization

package ’optim’. The Average Value, Mean Square Error (MSE), and Average Bias have

been computed and displayed in Table 2 and Table 3. The values show that as sample

size increases the MSE decreases and the Average Value of each parameter converges to

initial parameter values. These findings demonstrate the accuracy and consistency of

the estimation techniques.

6 Fitting and applicability to data

In this section, we present two real world applications to showcase the practicality and

versatility of the proposed model. The performance of YFD was compared to that of Yun

Weibull distribution (YWD), Yun Exponentiated distribution (YED), which are submod-

els of Yun-G family that are discussed in Chesneau et al. (2021), the Transmuted Fréchet

distribution (TFD) by Mahmoud and Mandouh (2013) and Exponentiated Weibull dis-

tribution (EWD) by Pal et al. (2006). The maximum likelihood method is employed

to estimate the parameters for the candidate models. We evaluated different goodness-

of-fit measures to illustrate the flexibility of the model. Specifically, −logL(negative

log-likelihood function), W (Cramér-von Mises Statistic), A (Anderson-Darling Statis-

tic) K–S (Kolmogorov–Smirnov Statistic), AIC (Akaike Information Criterion), CAIC

(Akaike Information Criterion with correction), BIC (Bayesian Information Criterion)

and HQIC (Hannan–Quinn Information Criterion), where
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AIC =2logL+ 2k,

CAIC =− 2logL+
2kn

(n− k − 1)
,

BIC =− 2logL+ klog(n),

HQIC =− 2logL+ 2klog(log(n))

where L is the likelihood function, k is the number of parameters of the model and n is

the sample size. By respecting the standards in the field, the best model corresponds

to smaller −logL,K–S,AIC,CAIC,BIC,HQIC, and greater p-value. Here, we used

the “AdequacyModel” package in R programming language to obtain the MLEs and

goodness-of-fit tests of the given data sets.

The first data represents the total time on test plot analysis for mechanical compo-

nents of the RSG-GAS reactor (Salman et al. (1999)) given below:

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347 0.150 0.358 0.101 1.359 3.465 1.060 0.614

1.921 4.082 0.199 0.605 0.273 0.070 0.062 5.320.

The second dataset corresponds to the maintenance data reported on active repair times

(hours) for an airborne communication transceiver (Von Alven (1964)) and its values are:

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 3 .8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5

2.0 2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5.

Table 4: Basic statistical description of the two datasets.

Data set Size (n) Min. Max. Mean Median SD Skewness Kurtosis

First 23 0.0620 6.5600 1.5780 0.6140 1.9307 1.3643 3.5446

Second 100 0.9200 5.3060 1.6580 1.5440 0.5994 3.1824 17.4236

Table 4 displays basic descriptive statistics of the two datasets. Here, the distribution

of the dataset shows a positive skewness and leptokurtic behaviour, which goes with the

moment properties of this distribution. Figure 3 shows the TTT plot of the two data

sets and it goes with the features of hrf of YFD.
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Figure 3: The TTT plots of the first data set (left) and the second data set(right).

Table 5: The MLEs of the first data set.

Model MLEs -log L

YFD α̂ = 3.171614, σ̂ = 2.8807293, λ̂ = 0.3978812 32.1474

YWD α̂ = 1.1656874, σ̂ = 0.6226505, λ̂ = 0.8270732 32.5615

TFD α̂ = 0.7314193, σ̂ = 0.6346519, λ̂ = 0.8446795 32.8500

EWD α̂ = 1.4933965, σ̂ = 0.6235447, λ̂ = 1.7240681 32.2272

YED α̂ = 3.3114036, σ̂ = 0.2134588 35.8682
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Table 6: The goodness-of-fit statistics for the first data set.

Model YFD YWD TFD EWD YED

W 0.0225 0.0665 0.0373 0.0491 0.0925

A 0.2200 0.4375 0.3266 0.3433 0.5850

AIC 70.2948 71.1229 71.7000 70.4544 75.7364

BIC 73.7013 74.5294 75.1065 73.8609 78.0074

CAIC 71.5580 72.3861 72.9632 71.7175 76.3364

HQIC 71.1515 71.9797 72.5567 71.3111 76.3075

K-S 0.0853 0.1306 0.0916 0.1156 0.1754

P-Value 0.9909 0.7808 0.9808 0.8959 0.4299

Table 5 shows the results of the MLEs and negative log-likelihood values. From Table

6 we can conclude that YFD provides the lowest W, A, AIC, BIC, CAIC, HQIC, K-S

values, and the largest p-value. Therefore, YFD is chosen as the best fit for the first

data. Figure 4 represents the fitted cdfs of the YFD, YWD, EWD, TFD, and YED

models with the empirical distribution for the first data set.
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Figure 4: CDF plots for the first data set.

The performance of YFD for the second data was also compared to that of YWD,

EWD, TFD, and YED. Table 7 lists MLEs of the competitive model parameters and

−logL values. The goodness-of-fit measures displayed in Table 8 prove that the YFD

is the best fit for the second data set. Figure 5 represents the fitted cdfs of the YFD,

YWD, EWD, TFD, and YED models with the empirical distribution for the second data

set.

Table 7: The MLEs of the second data set.

Model MLEs -log L

YFD α̂ = 2.0172188, σ̂ = 2.6584730, λ̂ = 0.6335838 101.4790

YWD α̂ = 2.4322088, σ̂ = 0.1218665, λ̂ = 0.9077587 105.0426

TFD α̂ = 1.9680747, σ̂ = 0.7954685, λ̂ = 0.8312829 102.0101

EWD α̂ = 0.5855134, σ̂ = 0.6815840, λ̂ = 1.9688407 103.2205

YED α̂ = 1.4732825, σ̂ = 0.1759881 105.4382
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Table 8: The goodness-of-fit statistics for the second data set.

Model YFD YWD TFD EWD YED

W 0.0524 0.1072 0.0664 0.0720 0.1144

A 0.3155 0.7700 0.4070 0.5313 0.8312

AIC 208.9581 216.0851 210.0203 212.441 214.8764

BIC 214.444 221.571 215.5062 217.9269 218.5337

CAIC 209.5295 216.6565 210.5917 213.0124 215.1554

HQIC 211.0131 218.1402 212.0753 214.4961 216.2464

K-S 0.1015 0.1085 0.1099 0.1129 0.1435

P-Value 0.7302 0.6509 0.6348 0.6002 0.2996

Figure 5: CDF plots for the second data set.
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7 Conclusion

In this article, we proposed a versatile continuous distribution based on the Yun-G

family, namely YFD. Several statistical properties of the proposed distribution, such

as moments, skewness, kurtosis, stochastic ordering, and entropy are evaluated. Two

characterizations of the distribution are obtained using the hazard rate function and

truncated moments. Five methods of parametric estimation have been utilized in this

study. The simulation study showed the accuracy and consistency of the estimation tech-

niques. Two real-world data sets from the engineering sector were used to demonstrate

the flexibility of the proposed model. In comparison to some competitive models, the

YFD provided the best fit for the data sets.
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