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ABSTRACT

In this paper, the distributions of products and ratios involving real scalar pos-

itive variables, symmetric products and symmetric ratios of real positive definite

matrices and symmetric product and symmetric ratios of Hermitian positive defi-

nite matrices in the complex domain are considered. Real scalar variable case is

taken as a starting point. Here, it is pointed out how distributions of products and

ratios are connected to Bessel integrals, reaction-rate probability integrals in nu-

clear reaction-rate theory, inverse Gaussian density, Krätzel integral and transform,

pathway transform, fractional integrals of the first and second kind etc. Only one

illustrative example each is given. Then, symmetric product and symmetric ratios

of positive definite matrices in the real and complex domain are considered. Here

also one illustrative example each is given. Some current research materials are also

mentioned in the introduction.
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reaction-rate probability integral, symmetric product of matrices, symmetric ratio of ma-
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1 Introduction

Products and ratios of random variables appear in very many places in different fields.

One category of problems called scaling models will have the following structure: To

start with there is a random variable X, which may be scalar/vector/matrix in the real

or complex domain. This is multiplied by a real scalar positive quantity a > 0. Then
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U = aX is a scaled X. If the density of X is a function of XX ′ or X ′X, where a prime

denotes the transpose, then a more appropriate scaling factor is
√
a so that U =

√
aX.

Then, the conditional density of U at given a is available from the density of X by

replacing X by a−
1
2U with the differential element dX replaced by a−

pq
2 dU if X is a p×q

matrix with pq distinct real scalar variables as elements. If a has its own distribution,

then it is a situation of Bayesian analysis with the conditional density given by f(U |a)
and a having its own marginal density, say, g(a). Then, the unconditional density is∫∞
0 f(U |a)g(a)da. Then, studying the properties of a in the conditional density of a,

given U , is the basis in Bayesian analysis. The above is a real scaling model connected to

Bayesian analysis. If the scaling factor is a positive definite matrix, then our U = A
1
2X.

Then, in the Bayesian structure, A itself may have a matrix-variate distribution and the

conditional density of U , given A, is f(U |A). This situation is very important in current

research, especially when X and A are Hermitian positive definite matrices because

according the Benavoli et al. (2016), Quantum Physics is nothing but Bayesian analysis

of Hermitian positive definite matrices in a Hilbert space. We can treat U as a scaling

model by taking A as a constant or having a Bayesian structure with f(U |A) being the

conditional density of U , given A, and A having its own distribution. We can treat

U = AX as a product of two independently distributed random quantities where each

item A and X may be scalar/vector/matrix variable, appropriately defined and having

their own distributions. In the same category of problems, we have scalar texture models

and matrix texture models in communication and engineering problems. In scalar texture

model, A is a real scalar positive quantity and X may be scalar/vector/matrix in the

real or complex domain, usually in the complex domain. This is the structure of a cross-

section of the mullti-look return signal in radar or sonar. The cross section may have

contaminants called speckles and cross section variable itself is called texture. Details

of the analysis of multi-look PolSAR (Polarimetric Synthetic Aparture Radar) data is

available in Deng (2016). The usual assumption there is that X is Gaussian distributed.

But when the surface is not smooth, then non-Gaussian models are preferred, see for

example, Frery et al.(1997), Yueh et al. (1989), Bombrun and Bealieu (2008). Recent

results are available when X is having a rectangular generalized gamma type density

with the exponential trace having an arbitrary power. In this category, there is a model

known as Kotz model which has been widely used in Statistics, in texture analysis in

communication theory etc. It is shown in Mathai (2023) that the traditionally used

normalizing constants were wrong and the correct normalizing constants are given in

Mathai (2023). The traditional normalizing constants may be seen from Dı́az-Garcia and

Gutiérrez Jáimez (2010). In the product model, if A or X has a vector or matrix-variate
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distribution belonging to logistic type model, then the problem goes into an extended

zeta function introduced by Mathai (2023a). Logistic models are preferred compared to

standard Gaussian models in industrial applications because the tail probabilities are

larger in the logistic models compared to that in the Gaussian model. The above are

some of the categories of product models.

This paper is organized as follows: Section 2 starts with the distribution of a prod-

uct of two real scalar positive random variable, independently distributed. When the

densities belong to generalized gamma type, then one has Bessel integrals, reaction-rate

probability integrals etc emerging. Section 3 illustrates the connections of densities of

products and ratios to fractional integrals and fractional calculus in the real scalar case.

Section 4 gives the corresponding connections to matrix-variate fractional calculus in

the real and complex domains. Section 5 gives some concluding remarks and points out

some open problems.

2 Distribution of a Product

Let us start with two statistically independently distributed real scalar random variables

x1 > 0, x2 > 0. In this paper, real scalar variables whether mathematical variables or

random variables, will be denoted by lower-case letters such as x, y. Real vector/matrix

variables, mathematical or random, will be denoted by capital letters such as X,Y .

Variables in the complex domain will be denoted with a tilde such as x̃, ỹ, X̃, Ỹ . Scalar

constants will be denoted by a, b etc and vector/matrix constants by A,B etc. No tilde

will be used on constants. Let the densities associated with x1 and x2 be f1(x1) and

f2(x2) respectively. Due to the assumption of independence, the joint density will be

f1(x1)f2(x2). Let us consider the transformation (x1, x2) → (u = x1x2, v = x2). Then,

the wedge product of differentials is dx1∧dx2 =
1
vdu∧dv. If the joint density of u and v

is denoted by g(u, v), then g(u, v) = 1
vf1(

u
v )f2(v) and the marginal density of u, denoted

by g1(u) is given by

g1(u) =

∫
v

1

v
f1(

u

v
)f2(v)dv =

∫
v

1

v
f1(v)f2(

u

v
)dv. (2.1)

The second part of (2.1) is obtained by taking v = x1 instead of taking v = x2. Let us

examine (2.1) for some specific densities f1(x1) and f2(x2). For example, let these be

real scalar generalized gamma densities of the form

fj(xj) =
δja

ρj
δj

j

Γ(
ρj
δj
)
x
ρj−1
j e−ajx

δj
j , δj > 0, ρj > 0, xj ≥ 0, j = 1, 2 (2.2)
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and zero elsewhere. Let u = x1x2. Then, from (2.1), the density of u, again denoted by

g1(u), is the following:

g1(u) = c1c2

∫ ∞

v=0

1

v
(
u

v
)ρ1−1e−a1(

u
v
)δ1vρ2−1e−a2vδ2dv

= c1c2u
ρ1−1

∫ ∞

0
vρ2−ρ1−1e−a2vδ2−a1uδ1v−δ1

dv (2.3)

where c1c2 is the product of the normalizing constants in (2.2), namely

c1c2 =

2∏
j=1

δja

ρj
δj

j

Γ(
ρj
δj
)
, δj > 0, ρj > 0, aj > 0, j = 1, 2.

The integral in (2.3) is connected to many problems in different areas. For δ2 = 1, δ1 =
1
2 ,

the integral in (2.3) is the reaction-rate probability integral in nuclear reaction-rate the-

ory, see Mathai and Haubold (1988). For δ1 = 1, δ2 = 1 the integral in (2.3) is the basic

Bessel integral and also for δj = 1, j = 1, 2 the integrand in (2.3), normalized, is the

inverse Gaussian density in Statistics, for δ2 = 1 and for a general δ1 the integral is the

Krätzel integral in applied analysis and there is also an integral transform associated

with it, known as Krätzel transform. This transform is also extended to cover Mathai’s

pathway family (see, Mathai, 2005), known as pathway transform. Some authors misin-

terpreted the integral in (2.3) and called it as generalized gamma, ultra gamma etc. But,

it is shown by the author that the integral has no connection to gamma integral and it

is connected to Bessel series, Bessel integral etc. Evaluation of the integral in (2.3) is a

challenging problem. The author’s collaboration with the German group of scientists in

the area of Astrophysics started when the German team brought some 12 open problems

to the author in 1982. All the problems, when converted from their differential equa-

tions format to integral equations, had a basic integral to be solved, which was (2.3) with

δ2 = 1 and δ1 = 1
2 . At that time, Mathai could not find any mathematical technique to

tackle the integral. Hence, he used statistical techniques to evaluate the general integral

in (2.3). Observe that the integrand in (2.3) is a product of positive integrable functions

and hence one can create statistical densities out of them. Then, the integral can be

identified with the structure in (2.1) and hence the integral could be identified with the

density of a product of real scalar positive random variables. Then, the density can be

evaluated through some other means, such as through general moments. But the density

of a product is unique and hence whatever is obtained as the density of the product is

the value of the integral to be evaluated. When x1 > 0 and x2 > 0 are independently

distributed, then, denoting the expected value of (·) by E[(·)], we have the following:

E[us−1] = E[xs−1
1 ]E[xs−1

2 ], E[xs−1
j ] =

∫ ∞

0
xs−1
j fj(xj)dxj , j = 1, 2 (2.4)
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in terms of the (s−1)th moments of u, x1, x2. Since the variables are positive real scalar

variables, one can compare these moments with the Mellin transforms of the functions

f1 and f2 with Mellin parameter s, denoted by Mfj (s), j = 1, 2. Then, from (2.4) we

have

Mg1(s) =Mf1(s)Mf2(s) (2.5)

whenever the Mellin transforms exist or whenever the respective integrals are convergent,

where g1(u) is the density of u. we can also obtain (2.5) by taking the Mellin transform

of the left and right sides in (2.1) directly. Once we have the Mellin transform, we can

obtain the density g1 by taking the inverse Melin transform, namely

g1(u) =
1

2πi

∫ c+i∞

c−i∞
Mf1(s)Mf2(s)u

−sds, i =
√

(−1) (2.6)

which is a contour integral. For applying the Mellin and inverse Mellin transform tech-

nique, the functions involved need not be statistical densities. The only requirements are

that the Mellin transforms of f1 and f2 exist and the product of the Mellin transforms

can be inverted. We will evaluate a general integral here so that as particular case, the

integral in (2.3) is available. Consider the following integral, denoted by Iw.

Iw =

∫ ∞

0
xγ−1e−axδ−b(w

x
)ρdx. (2.7)

We can identity this integral with the structure

Iw =

∫ ∞

v=0

1

v
f1(

w

v
)f2(v)dv

where f1(x) = e−bxρ
and f2(x) = xγe−axδ

. Then

Mf1(s) =

∫ ∞

0
xs−1e−bxρ

dx =
1

ρ
Γ(
s

ρ
)b

− s
ρ ,ℜ(s) > 0, b > 0, ρ > 0 (i)

where ℜ(·) means the real part of (·), and

Mf2(s) =

∫ ∞

0
xγ+s−1e−axδ

dx =
1

δ
Γ(
γ + s

δ
)a−( γ+s

δ
),ℜ(s) > −γ, δ > 0. (ii)

We have taken all parameters to be real because usually in a statistical problem the

parameters are real but the results hold for complex parameter γ also. In this case, the

condition is ℜ(γ) > 0,ℜ(s) > −ℜ(γ). Now, the product of the Mellin transforms from

(i) and (ii) is the following:

Mf1(s)Mf2(s) =
1

δρa
γ
δ

Γ(
s

ρ
)Γ(

γ + s

δ
)(a

1
δ b

1
ρ )−s. (iii)
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Hence the corresponding Mellin inverse is our Iw. That is,

Iw =
1

ρδa
γ
δ

1

2πi

∫ c+i∞

c−i∞
Γ(
s

ρ
)Γ(

γ + s

δ
)(a

1
δ b

1
ρw)−sds

=
1

ρδa
γ
δ

H2,0
0,2

[
a

1
δ b

1
ρw

∣∣
(0, 1

ρ
),( γ

δ
, 1
δ
)

]
, 0 < w <∞ (2.8)

where H(·) is the H-function, where the c in the contour is any positive real number.

For the theory and applications of the H-function, see Mathai et al.(2009). The H-

function in (2.8) can be put in computable series form. General techniques are available

in Mathai (1993). For a special case, this H-function can be written in terms of Bessel

hypergeometric series which will be considered here. For ρ = δ, γδ ̸= ±0, 1, ... we can

write Iw as the following, after replacing s
δ by s.

Iw =
1

δa
γ
δ

1

2πi

∫ c1+i∞

c1−i∞
Γ(s)Γ(

γ

δ
+ s)(abwδ)−sds (2.9)

where the c1 in the contour is any positive real number. The value of the contour integral

in (2.9) is available as the sum of the residues of the integrand at the poles of Γ(s) and

at the poles of Γ(γδ + s). The poles of Γ(s) are at the points s = −n, n = 0, 1, ... and the

residue at s = −n is given by

lim
s→−n

[(s+ n)Γ(s)Γ(
γ

δ
+ s)(abwδ)−s] = lim

s→−n
[
(s+ n)(s+ n− 1)...s

(s+ n− 1)...s
Γ(s)Γ(

γ

δ
+ s)(abwδ)−s]

= lim
s→−n

[
Γ(s+ n+ 1)

(s+ n− 1)...s
Γ(
γ

δ
+ s)(abwδ)−s]

=
(−1)n

n!
Γ(
γ

δ
− n)(abwδ)n.

But, for example,

Γ(α− n) = Γ(α)
(−1)n

(1− α)n

where, for example, (β)n is the Pochhammer symbol, (β)n = β(β + 1)...(β + n− 1), β ̸=
0, (β)0 = 1. Hence, the sum of the residues of the integrand at the poles of Γ(s) is the

following:

Γ(
γ

δ
)

∞∑
n=0

1

n!

1

(1− γ
δ )n

(abwδ)n = Γ(
γ

δ
)0F1( ; 1− γ

δ
; abwδ).

By proceeding exactly the same way, the sum of the residues of the integrand at the

poles of Γ(γδ + s) is the following:

Γ(−γ
δ
)(abwδ)

γ
δ 0F1( : 1 +

γ

δ
; abwδ).

Hence, from these two series the value of Iw is available. We may state it as a theorem.
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Theorem 2.1. For a > 0, b > 0, δ > 0, ρ > 0, ρ = δ, γδ ̸= ±n, n = 0, 1, ...

Iw =

∫ ∞

0
xγ−1e−axδ−b(w

x
)ρdx

=
1

δa
γ
δ

[Γ(
γ

δ
)0F1( ; 1− γ

δ
; abwδ)

+ Γ(−γ
δ
)(abwδ)

γ
δ 0F1( ; 1 +

γ

δ
; abwδ)], 0 < w <∞.

An evaluation of Iw in terms of Bessel functions of the second kind may be seen

from Jeffrey and Zwillinger (2007). Here we have taken f1 and f2 as having real scalar

variable generalized gamma densities. One can take different types of densities, where

the respective Mellin transforms exist, and obtain all types of interesting results.

h(w) =

∫
v

1

v
f1(

w

v
)f2(v)dv =

∫
v

1

v
f1(v)f2(

w

v
)dv

with

Mh(s) =Mf1(s)Mf2(s)

is known as the Mellin convolution of a product property. As we have seen that this

Mellin convolution of a product property can be directly connected to the density of a

product of two real scalar positive random variables. There is also a Mellin convolution

of a ratio property. Again, consider two real scalar positive variables x1 > 0, x2 > 0.

Then, we can consider the ratios x1
x2

or x2
x1

and for each case when we are transforming

to two other variables the second variable v can be taken as x1 or as x2. Thus, there

are four possibilities when considering a ratio. In the case of a product we had only two

possibilities. For example, if u2 = x2
x1

and if g2(u2) is the function corresponding to u2,

then, we can see that for v = x2, dx1 ∧ dx2 = − v
u2
2
du2 ∧ dv. Also,

E[us−1
2 ] = E[xs−1

2 ]E[x−s+1
1 ] ⇒Mg2(s) =Mf2(s)Mf1(2− s)

g2(u2) =

∫
v

v

u22
f1(

v

u2
)f2(v)dv. (2.10)

The two results in (2.10) together is called the Mellin convolution of a ratio property and,

as seen, it is associated with the density of a ratio when real scalar positive independently

distributed random variables are involved. Again, one can obtain a lot of results from

this ratio property also by taking different functions f1 and f2 or by taking different

densities when random variables are involved.
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3 Connection of Products and Ratios to Fractional Calcu-

lus

In Section 2 we considered a basic problem of deriving the distribution of a product

and a ratio of independently distributed real scalar positive variables. One illustrative

example given was in terms of both the densities f1 and f2 belonging to a generalized

gamma family of densities. Now, we consider a slightly different problem. Let f1(x1) be

a type-1 beta density with the parameters γ + 1 and α or with the density

f1(x1) =
Γ(γ + 1 + α)

Γ(α)Γ(γ + 1)
xγ1(1− x1)

α−1

for 0 ≤ x1 ≤ 1, α > 0, γ > −1 and f1(x1) = 0 elsewhere. When the parameters are

complex, the conditions will be ℜ(α) > 0,ℜ(γ) > −1. Let x2 > 0 have an arbitrary

density f2(x2) = f(x2). Now, let u = x1x2 the product. Let g(u) be the density of the

product u. Then, as shown in Section 2,

g(u) =

∫
v

1

v
f1(

u

v
)f2(v)dv

=
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)

∫
v

1

v
(
u

v
)γ(1− u

v
)α−1f(v)dv

=
Γ(γ + 1 + α)

Γ(γ + 1)
K−α

2,γ (f)

K−α
2,γ (f) =

uγ

Γ(α)

∫
v≥u

v−γ−α(v − u)α−1f(v)dv (3.1)

where K−α
2,γ (f) is Erdélyi-Kober fractional integral of the second kind of order α and

parameter γ. Thus, one can interpret a fractional integral of the second kind as a constant

multiple of the density of a product of two independently distributed real scalar positive

random variables when f1 and f2 are densities, with f1 being a type-1 beta density with

the parameters (γ + 1, α). Note that we have only made a slight change in the densities

and then considered the density of a product and we ended up in a fractional integral

in fractional calculus. This connection is illustrated in Mathai et al. (2022) and Mathai

and Haubold (2017). In a series of papers published in Linear Algebra and Applications,

starting from 2013, the author has extended fractional calculus to functions of matrix

argument in the real and complex domain, apart from pointing out the connection of

fractional integrals to statistical distribution theory. In these papers, a general definition

for fractional integrals, encompassing all the various definitions available in the literature,

is also given. In the real scalar variable case, the definition will correspond to taking

f1(x1) =
1

Γ(α)ϕ(x1)(1 − x1)
α−1 and f2(x2) = f(x2) an arbitrary function, where f1 and
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f2 need not be densities, and then taking Mellin convolution of a product. By taking

different values of ϕ(x1) one will end up with the various fractional integrals of the second

kind available in the literature, such as Riemann-Liouville integral, Weyl integral and so

on.

Now, consider the ratio u2 = x2
x1
, x1 > 0, x2 > 0. Let v = x2, then dx1 ∧ dx2 =

− v
u2
2
du2 ∧ dv and let g2(u2) be the function corresponding to u2. If x1 > 0 and x2 > 0

are independently distributed real scalar random variables, then g2(u2) is the density of

u2 =
x2
x1
, otherwise we tackle the problem through Mellin convolution of a ratio. Then,

g2(u2) =

∫
v

v

u22
f1(

v

u2
)f2(v)dv. (3.2)

Let us take f1(x1) to be a type-1 beta density with the parameters γ > 0 and α > 0,

that is,

f1(x1) =
Γ(γ + α)

Γ(γ)Γ(α)
xγ−1
1 (1− x1)

α−1

for 0 ≤ x1 ≤ 1, α > 0, γ > 0 and f1(x1) = 0 elsewhere. Let f2(x2) = f(x2) an arbitrary

density. Then,

g2(u2) =
Γ(γ + α)

Γ(γ)Γ(α)
(
v

u2
)γ−1(1− v

u2
)α−1f(v)dv

=
Γ(γ + α)

Γ(γ)
K−α

1,γ (f)

K−α
1,γ (f) =

u−γ−α
2

Γ(α)

∫
v≤u2

vγ(u2 − v)α−1f(v)dv (3.3)

where K−α
1,γ (f) is Erdélyi-Kober fractional integral of the first kind of order α and pa-

rameter γ. Hence, this fractional integral of the first kind is a constant multiple of a

statistical density of a ratio when f1 and f2 are statistical densities. From this obser-

vation, Mathai introduced a general definition for fractional integral of the first kind by

taking f1(x1) =
1

Γ(α)ψ(x1)(1−x1)
α−1 and f2(x2) = f(x2) an arbitrary function and then

considering the Mellin convolution of a ratio. It is shown that by specializing ψ(x1) one

can obtain all the different fractional integrals of the first kind available in the literature,

where the substitutions are x = v
u2

and x2 = v. Then the idea is extended to symmetric

product and symmetric ratio of matrices, which will be discussed in the next section

(see, Mathai and Haubold, 2018).

In integer order calculus or the usual calculus we have D,D2, ... where D is the

differential operator such as D = d
dt if t is the independent variable, whereas in fractional

calculus we have the notation for fractional derivative as Dα where α can be integer,
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fractions, negative or positive, or any complex number. Then, anti-integral is taken as

fractional derivative. In integer-order calculus, we take the integral as anti-derivative

but in fractional calculus we define fractional integral D−α first and then the fractional

derivative Dα is obtained as an anti-integral. For some integer n = 1, 2, ..., let ℜ(n−α) >
0. Then, consider the fractional integral D−(n−α). Let Dn be the n-th integer order

derivative. Then, symbolically we can write Dα = DnD−(n−α) or Dα = D−(n−α)Dn.

The first one is Known as Riemann-Liouville fractional derivative where the arbitrary

function f is operated with the fractional integral operator D−(n−α) first, then the n-

th derivative is taken. In the second one, known as Caputo derivative, the arbitrary

function f is differentiated n times and then a fractional integral D−(n−α) is taken. In

both the cases, fractional derivative is a type of integral defined over an interval. In

the integer order calculus, a derivative is a local activity, instantaneous rate of change

at a given point, whereas in fractional calculus the derivative is defined over an interval

which makes it more important in practical applications. In a physical situation, ideal

property may be taking place at a given point whereas in a practical situation that

property may be taking place either locally at the given point or somewhere in the

neighborhood of that point. The ideal point and its neighborhood are covered by a

fractional derivative whereas only the ideal point is covered by integer order derivative.

This is the physical interpretation given by Mathai as a comparison of fractional versus

integer order derivative. From a statistical point of view, one can define and obtain

properties of fractional integrals, thereby properties of fractional derivatives, through

statistical distribution theory.

4 Symmetric Product and Symmetric Ratio of Matrices

Here we restrict our matrices to be p× p positive definite when in the real domain and

p× p Hermitian positive definite when in the complex domain. A p× p matrix X̃ in the

complex domain is Hermitian when X̃ = X̃∗, where X̃∗ denotes the conjugate transpose

of X̃. Let X1 > O and X2 > O be two p× p real positive definite matrices. Let f1(X1)

and f2(X2) be the functions associated with X1 and X2. Let the joint function be

f1(X1)f2(X2) the product. In statistical terms, we are considering two p×p real matrix-

variate random variables with the respective densities f1(X1) and f2(X2) and we assume

that the matrices are statistically independently distributed so that the joint density is

the product of the individual densities. Let U = X
1
2
2 X1X

1
2
2 be the symmetric product

of X1 and X2 where X
1
2
2 is the symmetric positive definite square root of the symmetric

positive definite matrix X2 > O. We restrict our discussion to positive definite matrices
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because we will be able to define positive definite square root in a unique way.

If Y = (yij) is a p × q matrix in the real domain where the elements yij ’s are

distinct real scalar variables, then the wedge product of the differentials is denoted by

dY = ∧p
i=1 ∧

q
j=1 dyij . If the p × p matrix Z = (zij) = Z ′ (symmetric), where a prime

denotes the transpose, then the number of distinct elements possible is only p(p+ 1)/2.

Then, dZ = ∧i≤jdzij = ∧i≥jdzij . If the p × q matrix Ỹ = (ỹij) is in the complex

domain, then Ỹ can always be written as Ỹ = Y1 + iY2, i =
√
(−1), Y1, Y2 are real.

Then, the differential element dỸ is defined as dỸ = dY1 ∧ dY2. For a p × p matrix A

the determinant will be denoted as |A| or as det(A). If A is in the complex domain,

then det(A) = a+ ib, i =
√

(−1), a, b are real scalar quantities. Then, the absolute value

of the determinant will be denoted as |det(A)| =
√
a2 + b2. A statistical density f(X)

of X is defined as a real-valued scalar function of X such that f(X) ≥ 0 for all X in

the domain of X and
∫
X f(X)dX = 1, where X may be scalar or vector or matrix or a

collection of matrices, in the real or complex domain.

Let U = X
1
2
2 X1X

1
2
2 be the symmetric product of p×p real positive definite matrices as

defined above. We can also define a symmetric product as X
1
2
1 X2X

1
2
1 but the two forms

are different. In the real scalar case they are one and the same, but not in the matrix

case. Let V = X2. Then, we can show that dX1 ∧ dX2 = |V |−
p+1
2 dU ∧ dV parallel to

that in the scalar case. Note that V = X2, U = X
1
2
2 X1X

1
2
2 ⇒ X2 = V,X1 = V − 1

2UV − 1
2 .

Then, the marginal density of U , denoted by g(U), is the following:

g(U) =

∫
V
|V |−

p+1
2 f1(V

− 1
2UV − 1

2 )f2(V )dV. (3.4)

For matrix transformations and associated Jacobians, see Mathai (1997). If we take f1

and f2 as real matrix-variate gamma densities with shape parameters αj , j = 1, 2 and

scale parameter matrices as Bj , j = 1, 2, then the densities will be of the following forms,

where Xj > O is p× p real positive definite:

fj(Xj) =
|Bj |αj

Γp(αj)
|Xj |αj− p+1

2 e−tr(BjXj)j = 1, 2 (i)

where Bj > O,Xj > O,ℜ(αj) >
p−1
2 , j = 1, 2. Note that Bj > O is a constant p × p

real positive definite matix. Here, for example, Γp(α) is the real matrix-variate gamma,

defined as the following:

Γp(α) =

∫
X>O

|X|α−
p+1
2 e−tr(X)dX,ℜ(α) > p− 1

2

= π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),ℜ(α) > p− 1

2
, (3.5)
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where tr(·) means the trace of (·). This Γp(α) is also known by different names in the

literature such as generalized gamma. Mathai called it matrix-variate gamma because

it is associated with the matrix-variate gamma integral, given in the first line of (3.5).

The corresponding complex matrix-variate gamma function, denoted by Γ̃p(α) is the

following:

Γ̃p(α) =

∫
X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃,ℜ(α) > p− 1

= π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p+ 1),ℜ(α) > p− 1. (3.6)

If we take f1 and f2 as the regular matrix-variate gamma densities from (i) and if we

evaluate the density g(U) of U , then we will end up with an integral over V involving a

factor of the form e−tr(B2V )−tr(B1V
− 1

2UV − 1
2 ) which is a Bessel type or Krätzel type integral

in the matrix-variate case, with V and V −1 appearing in the exponent. In general, it

is an open problem but in some cases it can be evaluated by going through a Fourier

transform and then taking the inverse Fourier transform. Let us see whether we can

obtain a matrix-variate version of fractional integrals. Let

f1(X1) =
Γp(γ + p+1

2 + α)

Γp(γ + p+1
2 )Γp(α)

|X1|γ |I −X|α−
p+1
2

and f2(X2) = f(X2) where f is an arbitrary density. Note that

|V |−
p+1
2 |V − 1

2UV − 1
2 |γ |I − V − 1

2UV − 1
2 |α−

p+1
2

= |U |γ |V |−γ−α|V − U |α−
p+1
2

for V > U in the sense V − U > O (positive definite). Then, the marginal density of U ,

namely g(U), is the following:

g(U) =
Γp(γ + p+1

2 + α)

Γp(γ + p+1
2 )

K−α
2,γ (f) where

K−α
2,γ (f) =

|U |γ

Γp(α)

∫
V >U

|V |−γ−α|V − U |α−
p+1
2 f(V )dV

is defined by Mathai as the Erdélyi-Kober fractional integral of the second kind of order

α and parameter γ in the real matrix-variate case because for p = 1 it agrees with such

a fractional integral in the real scalar case.

Let us consider one problem in the complex domain also. Let X̃ have a complex

matrix-variate type-1 beta density with the parameters γ + p and α, namely

f1(X̃1) =
Γ̃p(γ + p+ α)

Γ̃p(γ + p)Γ̃p(α)
|det(X̃1)|γ |det(I − X̃1)|α−p
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for ℜ(α) > p − 1,ℜ(γ) > 0, O < X̃1 < I in the sense X̃1 > O and I − X̃1 > O (both

Hermitian positive definite) and f1(X̃1) = 0 elsewhere. Let X̃2 have an arbitrary density

f(X̃2). Let Ũ = X̃
1
2
2 X̃1X̃

1
2
2 , V = X2. We can show that dX̃1∧dX̃2 = |det(V )|−pdŨ ∧dṼ .

Then, procedging as in the real case, the marginal density of Ũ , denotd by g(Ũ), is the

following:

g(Ũ) =
Γ̃p(γ + p+ α)

Γ̃p(γ + p)
K̃−α

2,γ (f)

where

K̃−α
2,γ (f) =

|det(Ũ)|γ

Γ̃p(α)

∫
V >U

|det(V )|−γ−α|det(Ṽ − Ũ)|α−pf(Ṽ )dṼ

is the fractional integral in the matrix-variate case of the second kind of order α and

parameter γ in the complex domain. In a similar manner, we can derive the fractional

integral of the first kind of order α and parameter γ in the matrix-variate case in the

real and complex domains.

5 Concluding Remarks

Here we have only touched upon the theory of the distributions of products and ratios.

We have taken illustrative examples from a real scalar gamma density and type-1 beta

density. In the real scalar case, one can connect statistical distribution theory of a prod-

uct to reaction-rate probability integral, Krätzel integral, inverse Gaussian density, Bessel

integral and fractional integrals of the second kind. In the case of a ratio, we have taken

only one type of ratio of real scalar positive variables and connected to fractional integral

of the first kind. In the ratio case, if we had taken generalized gamma densities then one

could have obtained some very interesting integrals, connections to generalized type-2

beta form etc. If we had taken products and ratios of pathway densities, then one could

have derived a collection of interesting results. In the matrix-variate case, we have only

illustrated connection to fractional integrals by taking a complex matrix-variate type-1

beta density. Here also many other possibilities are there. In the case of matrix-variate

gamma densities, we have taken only the standard form where also one could not evalu-

ate the integrals because the integrals go into matrix-variate version of Bessel or Krätzel

integral. Matrix-variate gamma densities are also connected to Maxwell-Boltzmann and

Raleigh densities in Physics, see Mathai and Princy (2017). There are matrix-variate

gamma type densities available with the exponential trace having an arbitrary power

or exponent, see Mathai (2023, 2023a). Consideration of the distributions of symmetric
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products and symmetric ratios of matrices are all open problems when the exponential

trace has an arbitrary power.
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