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ABSTRACT

In this paper, we consider the cumulative residual extropy (CREX) of con-

comitant of order statistic and its properties, when samples are taken from

Cambanis family of distributions. By using the expression for CREX of con-

comitants of order statistics, the CREX of the RSS observations is obtained,

when the study variate Y is difficult to measure but an auxiliary variable X is

used to rank the units in each set, under the assumption that (X,Y ) follows

Cambanis type bivariate distributions.

Key words and Phrases: Ranked set sampling, Cambanis family of distributions,

Concomitants of order statistics, Cumulative residual extropy

1 Introduction

Let (X,Y ) be a bivariate random variable with cumulative distribution function

(cdf) F (x, y) and joint probability density function (pdf) f(x, y). Let fX(x) and

fY (y) be the marginal pdfs and FX(x) and FY (y) be the marginal cdfs of X and

Y respectively. Let (Xi, Yi) i = 1, 2, ..., n be a random sample from the bivariate
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population. If we arrange the sample in ascending order of magnitude based on X

observations as X1:n ≤ X2:n ≤ ... ≤ Xn:n, then Xr:n is the rth order statistic of Xi’s.

Then the Y variate associated with Xr:n is called concomitants of rth order statistic

and it is denoted by Y[r:n]. The concept of concomitants of order statistics was first

introduced by David (1973) . Concomitants of order statistics play an important

role in ranked set sampling, double sampling and certain selection procedures. For

more details on concomitants of order statistics and its application see, David and

Nagaraja (1998).

McIntyre (1952) introduced a new sampling scheme named ranked set sampling

(RSS), as an alternative to simple random sampling. Ranked set sampling is appli-

cable whenever ranking of a set of sampling units can be done easily by a judgement

method or based on the measurement of an auxiliary variable on the units selected

(see, Chen et al.(2004)). The procedure of RSS is as follows. Choose n2 units

randomly from the population. These units are randomly alloted into n sets, each

of size n . Then the units in each set are ranked visually or using some inexpensive

methods. From the first set of n units, choose the unit which has the lowest rank for

actual measurement. From the second set of n units the unit ranked second lowest

is measured. The process is continued until choose the unit which has the highest

rank in the nth set. Then make measurement on variable of interest of the selected

units, which constitute the ranked set sample(rss).

RSS as described in McIntyre (1952) is applicable whenever sample size is small

and ranking of a set of sampling units can be done easily by a judgment method.

Suppose the variable of interest, say Y , is expensive to measure and difficult to

rank the units. In this case Stoke (1977) modified the method by using an auxiliary

variable for ranking the sampling units in each set. Stoke (1977) described the

RSS procedure as follows. Choose n2 units randomly from a bivariate population.

Arrange these units into n sets, each of size n and measure the auxiliary variable X.

In the first set, that unit for which smallest measurment on the auxiliary variable X

is chosen. In the second set, that unit for which second smallest measurment on the

auxiliary variable X is chosen. Finally, in the nth set, that unit for which largest
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measurment on the auxiliary variable X is chosen. Then make measurments of the

study variable Y of the selected units and it is denoted by Y[r], r=1,2,...,n. Clearly

Y[r] is the concomitant of the rth order statistic of given random sample.

An example for the application of RSS explained by Stokes (1977) is given in

Al-Saleh and Al-Ananbeh (2007). Here the study variate Y represents the height

of the trees X represents the diameter of trees. Applying the concepts of concomi-

tant of order statistics in ranked set sampling, Chacko and Thomas(2007, 2008,

2009), Chacko (2017) and Tahamsebi and Jafari (2012) estimated the parameters of

distribution belonging to Morgenstern family of distributions.

Let X be a random variable with pdf fX(x) and cdf FX(x). Then a measure of

uncertanity, extropy introduced by Lad et al. (2015) is given by

J(X) =
−1

2

∫ ∞

−∞
(f(X)(x))

2dx (1.1)

=
−1

2

∫ 1

0
fY (F

−1(u))du, (1.2)

where F−1(u) = inf{x;FX(x) ≥ u}, u ∈ [0, 1] is the quantile function of FX(x). The

properties and applications of extropy based on ranked set samples was discussed

by Qiu and Eftekharian (2021) .

Jahanshashi et al. (2020) introduced a new measure of information named Cu-

mulative residual extropy (CREX) defined as

ξJ (X) =
−1

2

∫ ∞

0
(F (X)(x))

2dx (1.3)

=
−1

2

∫ 1

0

(1− u)2

fX(F−1(u))
du, (1.4)

where F (x) is the survival function of X. Kazemi et al. (2021) discussed the

properties of CREX based on minimum rss with unequal samples.

Morgenstern (1956) introduced a family of bivariate distributions which can be

constructed with specific marginal distributions. The pdf of (X,Y ) which follows a

Morgenstern family of distributions (MFD) is given by

f(x, y) = fX(x)fY (y)[1 + α(2FX(x)− 1)(2FY (y)− 1)],−1 ≤ α ≤ 1, (1.5)
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where α is the association parameter, fX(x) and fY (y) are the marginal pdfs and

FX(x) and FY (y) are the marginal cdfs of X and Y respectively. Cambanis (1977)

has modified the Morgenstern family of distributions by introducing new parameters.

The cdf of Cambanis type bivariate distributions (CTBD), proposed by Cambanis

(1977) is given by

H(x, y) = FX(x)FY (y)[1 + α1(1− FX(x)) + α2(1− FY (y))

+ α3(1− FX(x))(1− FY (y))], (1.6)

where the parameters α1, α2 and α3 are real satisfying the following conditions.

1+α1+α2+α3 > 0, 1+α1−α2−α3 > 0, 1−α1+α2−α3 > 0 and 1−α1−α2+α3 > 0.

The marginal distribution funtions of X and Y are

HX(x) = FX(x)(1 + α1(1− FX(x)))

and

HY (y) = FY (y)(1 + α2(1− FY (y)))

respectively. In this paper, we study the properties of weighted cumulative residual

extropy for concomitant of order statistic Y[r:n] and thereby study the properties of

extropy of rss when (X,Y ) follows Cambanis type bivariate distributions (CTBD),

proposed by Cambanis (1977) with α1 = 0. The cdf of CTBD with α1 = 0 is given

by

H(x, y) = FX(x)FY (y)[1 + α2(1− FY (y)) + α3(1− FX(x))(1− FY (y))], (1.7)

where |α2 + α3| < 1 and |α2 − α3| < 1 and it is denoted as CTBD(α2, α3). Koshti

(2021) and Alawady (2021) discussed various properties of Cambanis family of dis-

tributions. Chacko and George (2022) discussed the extropy properties of ranked

set sample when ranking is not perfect. Chacko and George (2023) explained the

extropy properties of ranked set sample for Cambanis family of distributions .

This paper is organized as follows. In section 2, the expresssion for CREX of

concomitant of rth order statistic Y[r:n] is obtained. In this section we also obtained
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upper and lower bounds of CREX of Y[r:n] . In section 3, we obtain CREX of ranked

set sample arising from CTBD(α2, α3) and study its monotonic property . Some

bounds for CREX of RSS is given in section 4. In section 5, we give concluding

remarks.

2 Cumulative residual extropy of concomitant of rth

order statistic

Let Y[r:n] r=1,2,...,n be the concomitant of rth order statistic of a bivariate random

sample arising from CTBD(α2, α3). Then the pdf of Y[r:n] is given by (see, Thomas

and Scaria, 2011)

fY [r:n](y) = fY (y)[1 + (α2 + α3
n− 2r + 1

n+ 1
)(1− 2FY (y))] (2.1)

= fY (y)[1 + C(r,n,α2,α3)(1− 2FY (y))], (2.2)

where

C(r,n,α2,α3) = α2 + α3
n− 2r + 1

n+ 1
. (2.3)

Also the cdf of Y[r:n] is given by

FY [r:n](y) = FY (y)[1 + C(r,n,α2,α3)(1− FY (y))]. (2.4)

Therefore the survival function of Y[r:n] is given by

F Y[r:n]
(y) = 1− FY (y)[1 + C(r,n,α2,α3)(1− FY (y))]. (2.5)

Then by using (1.3) the CREX of Y[r:n] is given by

ξJ (Y[r:n]) =
−1

2

∫
y
(F Y[r:n]

(y))2dy

=
−1

2

∫
y

[
1− FY (y)

[
1 + C(r,n,α2,α3)(1− FY (y))

]]2
dy

=
−1

2

∫
y

[
F Y (y)[1− C(r,n,α2,α3)FY (y)]

]2
dy

=
−1

2

∫ 1

0

(1− u)2(1− C(r,n,α2,α3)u)
2

fY (F−1(u))
du, (2.6)

=
−1

2

∫ 1

0

(1− u)2h(r,n,α2,α3)(u)
2

fY (F−1(u))
du, (2.7)
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where h(r,n,α2,α3)(u) = 1− C(r,n,α2,α3)u.

Theorem 2.1. Let Y[r:n] be the concomitant of rth order statistic of a random sam-

ple of size n arising from CTBD(α2, α3), then the CREX of Y[r:n] can be written as

ξJ (Y[r:n]) = ξJ (Y ) +
C(r,n,α2,α3)

12
E

[
1

fY (F−1(U1))

]
−

C2
(r,n,α2,α3)

60
E

[
1

fY (F−1(U2))

]
,

(2.8)

where ξJ (Y ) is the CREX of Y and Ui follows Beta(i + 1, 3), for i = 1, 2 with pdf

given by

gi(u) = 2(i+ 1)(2i+ 1)ui(1− u)2, for i = 1, 2. (2.9)

Proof. Since Y[r:n] is the concomitant of rth order statistic of a random sample of

size n arising from CTBD(α2, α3), we have

(F Y[r:n]
(y))2 = (F Y (y))

2[1− C(r,n,α2,α3)FY (y)]
2

= (F Y (y))
2 − 2C(r,n,α2,α3)(F Y (y))

2FY (y) + C2
(r,n,α2,α3)

(F Y (y))
2(FY (y))

2.

Therefore, the CREX of Y[r:n] is given by

ξJ (Y[r:n]) =
−1

2

∫
y
(F Y[r:n]

(y))2dy

=
−1

2

[∫
y
(F Y (y))

2dy − 2C(r,n,α2,α3)

∫
y
(F Y (y))

2FY (y)dy

+ C2
(r,n,α2,α3)

∫
y
(F Y (y))

2(FY (y))
2dy

]
= I1 − 2C(r,n,α2,α3)I2 + C2

(r,n,α2,α3)
I3, (2.10)

where

Ij =
−1

2

∫
y
[F Y (y)]

2[FY (y)]
j−1dy, j = 1, 2, 3.
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Clearly,

I1 =
−1

2

∫
y
(F Y (y))

2dy

= ξJ (Y ),

I2 =
−1

2

∫
y
(F Y (y))

2FY (y)dy

=
−1

2

∫ 1

0

u(1− u)2

fY (F−1(u))
du

and

I3 =
−1

2

∫
y
(F Y (y))

2(FY (y))
2dy

=
−1

2

∫ 1

0

u2(1− u)2

fY (F−1(u))
du.

If Ui follows a beta distribution Beta(i+ 1, 1), for i = 1, 2 with pdf given in (2.9)

Then we can write

I2 =
−1

24
E[

1

fY (F−1(U1))
]

and

I3 =
−1

60
E[

1

fY (F−1(U2))
].

On substituting I1 ,I2 and I3 in (2.10), we get (2.8). Hence the theorem.

Remark 2.1. If r = 1 and r = n in (2.5), we get the concomitant of first order

statistic and largest order statistic of a random sample of size n. Then the CREX

of concomitant of first order statistic Y[1:n] and concomitant of largest order statistic
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Y[n:n] are given by

ξJ (Y[1:n]) = ξJ (Y ) +
α2 + α3an

12
E

[
1

fY (F−1(U1))

]
− (α2 + α3an)

2

60
E

[
1

fY (F−1(U2))

]
and

ξJ (Y[n:n]) = ξJ (Y ) +
α2 − α3an

12
E

[
1

fY (F−1(U1))

]
− (α2 − α3an)

2

60
E

[
1

fY (F−1(U2))

]
,

where an = n−1
n+1 .

Theorem 2.2. If Y[r:n] is the concomitant of rth order statistic of a random sam-

ple of size n arising from CTBD(α2, α3),then the upper bound of ξJ (Y[r:n]) can be

written as

ξJ (Y[r:n]) ≤
C(r,n,α2,α3)

12
E

[
1

fY (F−1(U1))

]
, (2.11)

where U1 follows beta distribution Beta(2, 3).

Proof. Since ξJ (Y ) ≤ 0, by using Theorem 2.1 we can obtain the inequality (2.11)

directly . Hence the proof.

Theorem 2.3. Let Y[r:n] be the concomitant of rth order statistic of a random sam-

ple of size n arising from CTBD(α2, α3), if C(r,n,α2,α3) ̸= 0, then the lower bound

of ξJ (Y[r:n]) is given by

ξJ (Y[r:n]) ≥
−1

2

(
C4
(r,n,α2,α3)

− 9C3
(r,n,α2,α3)

+ 36C2
(r,n,α2,α3)

− 84C(r,n,α2,α3) + 126

630

) 1
2

×

(
E

1

fY (y)2

) 1
2

. (2.12)

Proof. From (2.7), we have

ξJ (Y[r:n]) =
−1

2

∫ 1

0

(1− u)2(1− C(r,n,α2,α3)u)
2

fY (F−1(u))
du.
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By applying Cauchy - Schwarz inequality, we have

ξJ (Y[r:n]) ≥
−1

2

(∫ 1

0
(1− u)4(1− C(r,n,α2,α3)u)

4du

) 1
2
(∫ 1

0

1

fY (F−1(u))2

) 1
2

.(2.13)

Again∫ 1

0
(1− u)4(1− C(r,n,α2,α3)u)

4du =
C4
(r,n,α2,α3)

− 9C3
(r,n,α2,α3)

+ 36C2
(r,n,α2,α3)

630

+
−84C(r,n,α2,α3) + 126

630
. (2.14)

Also ∫ 1

0

1

fY (F−1(u))2
du =

∫
1

fY (y)
dy

= E
1

fY (y)2
. (2.15)

On substituting (2.14) and (2.15) in (2.13) we get (2.12) . Hence the proof.

Example 2.1. If (X,Y ) follows CTBD(α2, α3) given in (1.7) with marginal pdfs

of X and Y are fX(x) = 1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1 respectively,

then

ξJ (Y[r:n]) =
−1

2

∫ 1

u=0
(1− u)2(1− C(r,n,α2,α3)u)

2du

=
−1

2

[
C2
(r,n,α2,α3)

− 5C(r,n,α2,α3) + 10

30

]
.

Example 2.2. If (X,Y ) follows CTBD(α2, α3) given in (1.7) with marginal pdfs

of X and Y are fX(x) = θ1e
−θ1x, x ≥ 0 and fY (y) = θ2e

−θ2y, y ≥ 0 respectively ,

then

ξJ (Y[r:n]) =
−1

2

∫ 1

u=0
θ2(1− u)(1− u)2(1− C(r,n,α2,α3)u)

2du

=
−θ2
2

[
C2
(r,n,α2,α3)

− 6C(r,n,α2,α3) + 15

60

]
.
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3 CREX of Ranked Set Sample

Let Y[1] ,Y[2],...,Y[n] be the ranked set sample of size n arising from CTBD(α2, α3)

in which X observations are used to rank the units in each set. Clearly Y[r],

r = 1, 2, ..., n are the concomitant of order statistic and Y[r], r = 1, 2, ..., n are in-

dependent. If YRSS = {Y[r], r = 1, 2, ..., n} ,then the CREX of YRSS can be written

as

ξJ (YRSS) =
−1

2

n∏
r=1

∫
y
(F Y[r]

)2dy

=
−1

2

n∏
r=1

[−2ξJ (Y[r])]

= (−1)n−12n−1
n∏

r=1

[
ξJ(Y ) +

C(r,n,α2,α3)

12
E

[
1

fY (F−1(U1))

]

−
C2
(r,n,α2,α3)

60
E

[
1

fY (F−1(U2))

]]
.

Example 3.1. If (X,Y ) follows CTBD(α2, α3) given in (1.7) with marginal pdfs

of X and Y are fX(x) = 1, 0 ≤ x ≤ 1 and fY (y) = 1, 0 ≤ y ≤ 1 respectively , then

ξJ (YRSS) =
−1

2

n∏
r=1

[
C2
(r,n,α2,α3)

− 5C(r,n,α2,α3) + 10

30

]
.

Example 3.2. If (X,Y ) follows CTBD(α2, α3) given in (1.7) with marginal pdfs

of X and Y are fX(x) = θ1e
−θ1x, x ≥ 0 and fY (y) = θ2e

−θ2y, y ≥ 0 respectively ,

then

ξJ (YRSS) =
−θn2
2

∏n
r=1

[
C2

(r,n,α2,α3)
−6C(r,n,α2,α3)

+15

60

]
.

Definition 3.1. (Shaked and Shanthikumar (2007)) Let X1 and X2 be two random

variables with cdfs F1 and F2 and pdfs f1 and f2 respectively. The left continuous

inverses of F1 and F2 are given by F−1
1 (u) = inf{t : F1(t) ≥ u} and F−1

2 (u) =

inf{t : F2(t) ≥ u}, 0 ≤ u ≤ 1. Then X1 is said to be smaller than X2 in dispersive

order denoted by X1 ≤disp X2 if F−1
2 (F1(x)) − x is increasing in x ≥ 0. Clearly if

X1 ≤disp X2 , then f1(F
−1
1 (u)) ≤ f2(F

−1
2 (u)), for 0 ≤ u ≤ 1.
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Theorem 3.1. Let (X,Y ) follows CTBD(α2, α3) given in (1.5) with marginal cdfs

FX(x) and FY (y) and pdfs fX(x) and fY (y) respectively. Let YRSS = {Y[r], r =

1, 2, ..., n} be the ranked set sample of size n arising from CTBD(α2, α3) in which

X observations are used to rank the units. Let (V,W ) be another bivariate random

variable follows CTBD(α2, α3) given in (1.3) with marginal cdfs GV (v)and GW (w)

and pdfs gV (v) and gW (w) respectively. Let WRSS = {W[r], r = 1, 2, ..., n} be ranked

set sample of size n arising from (V,W ) in which observations on V are used to rank

the units. If Y ≤disp W , then ξJ (YRSS) ≥ ξJ (WRSS).

Proof. We have

ξJ (YRSS) =
−1

2

n∏
r=1

∫ 1

0

(1− u)2(1− C(r,n,α2,α3)u)
2

fY (F−1(u))
du.

If Y ≤disp W , we have fY (F
−1(u)) ≥ gW (G−1(u)) for all u in (0, 1) .

Therefore

ξJ (YRSS) ≥ −1

2

n∏
r=1

∫ 1

0

(1− u)2(1− C(r,n,α2,α3)u)
2

gW (G−1(u))
du

= ξJ (WRSS).

Hence the proof.

4 Bounds of ξJ (YRSS)

In this section, we obtain some lower bounds and upper bounds for ξJ (YRSS). Before

that we give some properties of h(r,n,α2,α3)(u) given in (2.6). We have tabulated the

value of h(r,n,α2,α3)(u) for n = 10, r = 1, 2, ..., 10 and for the different combinations of

(α2, α3) as (−0.2,−0.7), (−0.2, 0.7), (0.2,−0.7) and (0.2, 0.7) and are given in Table

1 and Table 2. We also drawn the graphs of h(r,n,α2,α3)(u) against u for different

combinations of (α2, α3) given in Figure 1 to Figure 4 and the graphs of h(r,n,α2,α3)(u)

against r for different combinations of (α2, α3) given in Figure 5 to Figure 8. Clearly

the value of h(r,n,α2,α3)(u) lies between 0 and 2.
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Figure 1: Graph of h(r,n,α2,α3)(u) against u when α2 = 0.2 and α3 = 0.7 for n = 10

Figure 2: Graph of h(r,n,α2,α3)(u) against u when α2 = 0.2 and α3 = −0.7 for n = 10
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Figure 3: Graph of h(r,n,α2,α3)(u) against u when α2 = −0.2 and α3 = 0.7 for n = 10

Figure 4: Graph of h(r,n,α2,α3)(u) against u when α2 = −0.2 and α3 = −0.7 for

n = 10
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Figure 5: Graph of h(r,n,α2,α3)(u) against r when α2 = 0.2 and α3 = 0.7 for n = 10

Figure 6: Graph of h(r,n,α2,α3)(u) against r when α2 = 0.2 and α3 = −0.7 for n = 10
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Figure 7: Graph of h(r,n,α2,α3)(u) against r when α2 = −0.2 and α3 = 0.7 for n = 10

Figure 8: Graph of h(r,n,α2,α3)(u) against r when α2 = −0.2 and α3 = −0.7 for

n = 10
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Table 1: h(r,n,α2,α3)(u) when α3 is positive for n = 10.

α2=0.2 and α3=0.7 α2=-0.2 and α3=0.7

r u=0.25 u=0.5 u=0.75 u=1 u=0.25 u=0.5 u=0.75 u=1

1 0.8068 0.6136 0.4205 0.2273 0.9068 0.8136 0.7205 0.6273

2 0.8386 0.6773 0.5159 0.3545 0.9386 0.8773 0.8159 0.7545

3 0.8705 0.7409 0.6114 0.4818 0.9705 0.9409 0.9114 0.8818

4 0.9023 0.8045 0.7068 0.6091 1.0023 1.0045 1.0068 1.0091

5 0.9341 0.8682 0.8023 0.7364 1.0341 1.0682 1.1023 1.1364

6 0.9659 0.9318 0.8977 0.8636 1.0659 1.1318 1.1977 1.2636

7 0.9977 0.9955 0.9932 0.9909 1.0977 1.1955 1.2932 1.3909

8 1.0295 1.00591 1.0886 1.1182 1.1295 1.2591 1.3886 1.5182

9 1.0614 1.1227 1.1841 1.2455 1.1614 1.3227 1.4841 1.6455

10 1.0932 1.1864 1.2795 1.3727 1.1932 1.3864 1.5795 1.7727

Table 2: h(r,n,α2,α3)(u) when α3 is negative for n = 10.

α2=0.2 and α3=-0.7 α2=-0.2 and α3=-0.7

r u=0.25 u=0.5 u=0.75 u=1 u=0.25 u=0.5 u=0.75 u=1

1 1.0932 1.1864 1.2795 1.3727 1.1932 1.3864 1.5795 1.7727

2 1.0614 1.1227 1.1841 1.2455 1.1614 1.3227 1.4841 1.6455

3 1.0295 1.0591 1.0886 1.1182 1.1295 1.2591 1.3886 1.5182

4 0.9977 0.9955 0.9932 0.9909 1.0977 1.1955 1.2932 1.3909

5 0.9659 0.9318 0.8977 0.8636 1.0659 1.1318 1.1977 1.2636

6 0.9341 0.8682 0.8023 0.7364 1.0341 1.0682 1.1023 1.1364

7 0.9023 0.8045 0.7068 0.6091 1.0023 1.0045 1.0068 1.0091

8 0.8705 0.7409 0.6114 0.4818 0.9705 0.9409 0.9114 0.8818

9 0.8386 0.6773 0.5159 0.3545 0.9386 0.8773 0.8159 0.7545

10 0.8068 0.6136 0.4205 0.2273 0.9068 0.8136 0.7205 0.6273
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Theorem 4.1. Let Y1, Y2, .., Yn be a simple random sample from a distribution with

cdf FY (y) and pdf fX(x).Let {Y[r], r = 1, 2, ..., n} be the ranked set sample of size n

arising from CTBD(α2, α3) in which X observations are used to rank the units in

each . If YSRS = {Y1, Y2, .., Yn} and YRSS = {Y[r], r = 1, 2, ..., n}, then for n ≥ 1,

ξJ (YRSS)

ξJ (YSRS)
≤

n∏
r=1

(h(r,n,α2,α3)(u0))
2, (4.1)

where u0 is the value of u which maximise h(r,n,α2,α3)(u) = 1− C(r,n,α2,α3)u.

Proof. We have

ξJ (YSRS) =
−1

2

n∏
r=1

∫
y
(F Y (y))

2dy

=
−1

2

n∏
r=1

∫ 1

0

(1− u)2

fY (F−1(u))
du.

Then,

ξJ (YRSS) =
−1

2

n∏
r=1

∫ 1

0

(1− u)2

fY (F−1(u))
h2(r,n,α2,α3)

(u)du.

Let u0 be the value of u which maximise h(r,n,α2,α3)(u). Then,

ξJ (YRSS) ≥ −1

2

n∏
r=1

∫ 1

0

(
(1− u)2

fY (F−1(u))
(h(r,n,α2,α3)(u0))

2

)
du

=
−1

2

n∏
r=1

(∫ 1

0

(1− u)2

fY (F−1(u))
du

)
n∏

r=1

(h(r,n,α2,α3)(u0))
2

= ξJ (YSRS)

n∏
r=1

(h(r,n,α2,α3)(u0))
2.

Since ξJ (YSRS) < 0

ξJ (YRSS)

ξJ (YSRS)
≤

n∏
r=1

(h(r,n,α2,α3)(u0))
2.

Hence the proof.



Cumulative Residual Extropy Properties of Ranked Set Sample 67

Theorem 4.2. Let YRSS = {Y[r], r = 1, 2, ..., n} be the ranked set sample of size n

arising from CTBD(α2, α3) in which X observations are used to rank the units in

each set. Then for n ≥ 1, the lower bound of CREX of YRSS is given by

ξJ (YRSS) ≥
−1

2

(
E

1

(fY (y))2

)n
2

×
n∏

r=1

(
C4
(r,n,α2,α3)

− 9C3
(r,n,α2,α3)

+ 36C2
(r,n,α2,α3)

− 84C(r,n,α2,α3) + 126

630

) 1
2

.

Proof. We have

ξJ (YRSS) =
−1

2

n∏
r=1

∫ 1

0

(1− u)2(1− C(r,n,α2,α3)u)
2

fY (F−1(u))
du.

Using Cauchy-Schwarz inequality

ξJ (YRSS) ≥
−1

2

n∏
r=1

(∫ 1

0

1(
fY (F−1(u))

)2du) 1
2
(∫ 1

0
(1− u)2(1− C(r,n,α2,α3)u)

2du
) 1

2

=
−1

2

(
E

1

(fY (y))2

)n
2

×
n∏

r=1

(
C4
(r,n,α2,α3)

− 9C3
(r,n,α2,α3)

+ 36C2
(r,n,α2,α3)

− 84C(r,n,α2,α3) + 126

630

) 1
2

.

Hence the proof.

5 Conclusion

In this work, we considered the information content of ranked set sample for Cam-

banis type bivariate distributions using CREX measure when ranking is subject to

error. If we consider a ranked set sampling in which an auxiliary variable is used to

rank the units in each set, then the observation of RSS are independently distributed

concomitants of order statistics. In this work, we derived the CREX of concomitants

of order statistics and then derived the CREX of RSS in which the ranking of the

units are based on measurments of easily and exactly measurable auxiliary variable

X which is correlated with the study variable Y , under the assumption that (X,Y )

follows CTBD(α2, α3).
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