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ABSTRACT

The double Lomax distribution is the ratio of two independent and identi-

cally distributed classical Laplace distributions and it can be used to analyse

data sets with heavy tails and peakedness. In the present paper, we intro-

duce asymmetric generalization of double Lomax distribution. We derived the

probability density function of asymmetric double Lomax distribution and its

various properties were studied. The maximum likelihood estimation procedure

is employed to estimate the parameters of the proposed distribution and an al-

gorithm in R package is developed to carry out the estimation. To validate the

algorithm, simulation studies were conducted with various parameter values.

Finally, we fitted the asymmetric double Lomax, asymmetric Laplace, double

Lomax and Gaussian distributions to microarray gene expression dataset and

financial datasets and compared them.
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1 Introduction

There has recently been a surge of interest in constructing more flexible distributions

that can account for symmetry, skewness, kurtosis, and heavier tails in data. In

the fields of biology, economics, finance, psychology, and sociology, the response

variables and hence the errors in regression models do not have to follow Gaussian

law. In fact, in many cases, the response variable distributions have heavy tails. As a

result, more flexible parametric distributions are required to handle error structures

in these circumstances. Skew-symmetric distributions have gained a lot of attention

in the statistical literature during the last two decades. One reason for this is

that many of the existing symmetric families of distributions are unable to describe

skewed data sets.

Laplace distributions and their asymmetric generalisations have recently found

use in a variety of fields, including life testing, microarray modelling, and telecom-

munications. Asymmetric Laplace (see, Kotz et al., 2001) is an asymmetric version

of the Laplace distribution that can be used to model asymmetric and heavy-tailed

data sets. Many generalizations of Laplace distribution were studied so far. Esscher

transformed Laplace (ETL) distribution (see, Sebastian and Dais, 2012) is another

asymmetric generalizations of Laplace distribution and the first Order Moving Aver-

age Model with Esscher Transformed Laplace innovations was introduced in Bindu

and Dais (2017). Recently Punathumparambath (2020) introduced Transmuted

Esscher transformed Laplace (TETL) distribution. Arezoomand et al. (2018) in-

troduced new asymmetric generalization of Laplace distribution called asymmetric

Uniform-Laplace (AUL) distribution. Kumar and Jose (2019) proposed an alter-

native version to the Laplace distribution called alternative Laplace distribution

(ALD). Punathumparambath and Kulathinal (2015) introduced double Lomax dis-

tribution (DLD) which is the ratio of two independent and identically distributed

Laplace distributions. In this article we present an asymmetric generalization of

double Lomax distribution (see, Punathumparambath and Kulathinal, 2015) called

the asymmetric double Lomax distribution.

Fernandez and Steel (1998) proposed a method to convert symmetric distribu-
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tion into an asymmetric distribution by introducing an inverse scale factors in the

positive and negative orthants of the symmetric distribution. Symmetric double

Lomax distribution is introduced by Punathumparambath and Kulathinal (2015).

We extended this distribution by applying the method introduced by Fernandez and

Steel (1998) and propose a family of asymmetric double Lomax (ADL) distributions.

The double Lomax (DL) distribution is a natural symmetric extension of Lomax

distribution (see, Lomax 1958) to the real line and is the ratio of two independent

and identically distributed classical Laplace distributions (see, Kotz et al. 2001) and

is defined as follows.

Definition 1.1. Let X1 and X2 be two independent and identically distributed

(i.i.d.) standard classical Laplace random variables. Then the corresponding proba-

bility distribution of X = X1/X2 is given by

f(x) =
1

2 (1 + |x|)2
, −∞ < x < ∞. (1.1)

The Laplace distribution can also be expressed as the difference of two i.i.d

exponentials and hence, Xi
d
= IiEi, for i = 1, 2 where, Ei ∼ Exp(1), for i = 1, 2

and I ′is are independent of Ei and takes values ±1 with equal probabilities.

Then the cdf can be given by

F (x) =


1

2(1−x) , for x ≤ 0,

(
1− 1

2(1+x)

)
, for x > 0.

(1.2)

Rest of this article is organized as follows. In Section 2, we define the ADL

probability density function (pdf), cumulative distribution function (cdf) and reli-

ability measures. In Section 3, important mathematical properties of the ADL are

derived such as, quantile function, moments, an expression for the Rényi entropy

and order statistics. Maximum likelihood estimation of parameters using the BFGS

algorithm of optim function (see, Nash, 1990 and R Core Team, 2020) are described

in Section 4. Simulation studies were carried out to illustrate the performance of the

algorithm and is presented in Section 5. Applications of the proposed distributions
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to microarray gene expression dataset and three financial datasets were illustrated

in Section 6. Finally some concluding remarks were given in Section 7.

2 Asymmetric Double Lomax Distribution

Using the Fernandez and Steel (see, Fernandez and Steel, 1998) approach, we in-

troduce asymmetry into the symmetric double Lomax distribution. To convert a

symmetric distribution into an asymmetric distribution, inverse scale factors are in-

troduced in the positive and negative orthants. As a result, a symmetric density f

produces the skewed distributions indexed by κ > 0.

If g(·) is symmetric on ℜ, then for any κ > 0, a skewed density can be obtained

as

f(x) =
2κ

1 + κ2

 g(xκ), for x > 0,

g(xκ), for x ≤ 0.
(2.1)

In Eq. (2.1), when g is the symmetric double Lomax distribution with density

(1.1), we get a skewed distribution with the density function defined as follows.

Definition 2.1. A random variable X follows an Asymmetric Double Lomax (ADL)

distribution with parameters (µ, σ, k), denoted by X ∼ ADL(µ, σ, κ) if its probability

density function is given by

f(x) =
κ

σ(1 + κ2)

 (1− 1
σ κ(x− µ))−2, for x ≤ µ,

(1 + κ
σ (x− µ))−2, for x > µ,

(2.2)

and µ ∈ R, σ, κ > 0.

The parameters (µ, σ, κ) are the location, scale, and skewness parameters, re-

spectively.

The cumulative distribution function (cdf) of the ADL distribution is given by

F (x) =


κ2

1+κ2 [1− 1
σ κ(x− µ)]−1, for x ≤ µ,

1− 1
1+κ2 [1 +

κ
σ (x− µ)]−1, for x > µ.

(2.3)
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Figure 1: Plots of density of ADL for µ = 0 and for various values of σ and κ, (a)

0 < κ < 1 (b) κ ≥ 1.

When κ = 1 we get the symmetric double Lomax distribution.

Plots of the pdf of ADL given in Eq. (2.2) for µ = 0 and for various values of σ

and κ are given below.

Figure 1 presents the plots of the pdf of ADL(µ, σ, κ) for 0 ≤ κ < 1 and κ ≥ 1.

From Figure 1 we can see that ADL is asymmetric and unimodal.

Now we derive expressions for the reliability measures such as survival function,

hazard rate function, reverse hazard rate function and odds function for the ADL

so that they can be useful for studying reliability of a system involving one unit.

The survival function (sf) of the ADL distribution is given by

S(x) =


1− κ2

1+κ2 [1− 1
κσ (x− µ)]−1, for x ≤ µ,

1
1+κ2 [1 +

κ
σ (x− µ)]−1, for x > µ.

(2.4)

Graph of cdf given in Eq. (2.3) and sf presented in Eq. (2.4) of ADL for various

values of σ and κ are given in Figure 2.
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Figure 2: (a) Plots of cumulative distribution function (cdf) and (b) plots of survival

function (sf) of ADL for µ = 0 and various values of parameters σ and κ.

The hazard function (hf) of the ADL distribution is given by

h(x) =


κ

σ(1+κ2)

[1− 1
σ κ

(x−µ)]−2

1− κ2

1+κ2
(1− 1

σ κ
(x−µ))

−1 , for x ≤ µ,

κ
σ [1 +

κ
σ (x− µ)]−1, for x > µ.

(2.5)

Graph of hazard function (hf) given in Eq. (2.5) of ADL for various values of σ and

κ are given in Figure 3. From the Figure 3 we can observe that failure rate of ADL

exhibits both increasing and decreasing behaviour over the real line. The reversed

hazard function (rhf) of the ADL distribution, r(x) = f(x)
F (x) is given by

r(x) =


1
σκ [1−

1
σ κ(x− µ)]−1, for x ≤ µ,

κ
σ(1+κ2)

[1+κ
σ
(x−µ)]−2

1− 1
1+κ2

[1− 1
σ κ

(x−µ)]−1 , for x > µ.

(2.6)

Graph of reversed hazard function (rhf) of ADL for various values of σ and κ are

given in Figure 4. From the Figure 4 we can observe that reverse failure rate of

ADL exhibits both increasing and decreasing behaviour over the real line.
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Figure 3: Plots of hazard function (hf) of ADL for various values of parameters µ,

σ and κ and (a) µ = 0 and 0 < κ < 1 (b) κ ≥ 1.

Figure 4: Plots of reversed hazard function (rhf) of ADL for various values of

parameters µ, σ and κ, (a) 0 < κ < 1 (b) κ ≥ 1.
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Figure 5: Plots of Odds function (Of) of ADL for various values of parameter µ, σ

and κ and (a) µ = 0 and 0 < κ < 1 (b) κ ≥ 1.

The odds function (of) of the ADL distribution O(x) = F (x)
S(x) , is given by

O(x) =


κ2

1+κ2
[1− 1

σ κ
(x−µ)]−1

1− κ2

1+κ2
[1− 1

κσ
(x−µ)]−1

, x < µ,

1− κ2

1+κ2
[1+κ

σ
(x−µ)]−1

κ2

1+κ2
[1+κ

σ
(x−µ)]−1

, x ≥ µ.

(2.7)

Graph of odds function (of) of ADL for various values of σ and κ are given in Figure

5.

3 Mathematical Properties

In this section, we provide some main mathematical properties of ADL distribution.

Figure 1 shows density plots of ADL distributions for various values of κ. For ADL

distribution both tails are power tails and the rate of convergence depends on the

values of κ. When κ < 1 the curve moves to the right of the symmetric curve giving

heavier right tail, and vice versa when κ > 1. Right tail becomes heavier as κ

approaching to zero and left tail becomes heavier as the value of κ increasing from

one. For κ = 1, the distribution is symmetric.
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Below we list a few important properties of ADL distributions. We refer Kotz

et al. (2001) for properties that are similar to asymmetric Laplace (AL).

(i) Double Lomax (DL) is the ratio of two independent and identically distributed

classical Laplace distributions. Hence we can represent asymmetric double

Lomax random variable, X ∼ ADL(µ, σ, κ), as follows:

X
d
= µ+ I1E1

I2E2
= µ+ I E1

E2
where, E′

is, i = 1, 2, are exponentially distributed

with means σ/κ and σκ, respectively. I take values ±1 with equal probabilities

and is independent of E′
is.

(ii) If X ∼ ADL(µ, σ, κ), then

P (X ≤ µ) =
κ2

1 + κ2
= qκ

P (X > µ) =
1

1 + κ2
= pκ.

The parameter κ controls the probability assigned to each side of µ and for

κ = 1, the two probabilities are equal and the distribution is symmetric about

µ.

(iii) The ADL(µ, σ, κ) density can be written as a mixture of two Lomax densites

with parameters s1 and s2 respectively and is as follows:

f(x) = pκ
1

s1

(
1 +

(x− µ)

s1

)−2

I(µ, ∞)(x)+qκ
1

|s2|

(
1 +

(x− µ)

s2

)−2

I(−∞, µ)(x),

were s1 = σ/κ, s2 = −σκ, IA(x) is the indicator function, which is equal to 1

if x belong to the set A and zero otherwise. pκ and qκ are defined in property

(ii).

(iv) If X ∼ ADL(µ, σ, κ), then Y = aX + b ∼ ADL(b+ aµ, |a|σ, κa), where a ∈ R,

a ̸= 0, b ∈ R and κa = κsign(a), sign(a) = 1, if a > 0, sign(a) = −1,

if a < 0 and sign(a) = 0, if a = 0. Hence, the distribution of a linear

combination of a random variable with ADL(µ, σ, κ) distribution is also ADL.

If X ∼ ADL(µ, σ, κ), then Y = (X−µ)
σ ∼ ADL(0, 1, κ), which can be called as

the standard ADL distribution.
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(v) The mode of the distribution is µ and the value of the density function at µ

is (κ/(1 + κ2))/σ.

(vi) The value of the distribution function at µ is κ2/(1 + κ2) and hence, µ is also

the κ2/(1 + κ2)-quantile of the distribution.

(vii) ADL distributions have heavier tails than AL distributions. Note that the tail

probability of the symmetric double Lomax density is F̄ ∼ cx−1, as x → ±

∞, where F̄ is the survival function. The heavy tail characteristic makes this

densities appropriate for modeling network delays, signals and noise, financial

risk or microarray gene expression datasets.

3.1 Quantile Function

The quantile function of X can be obtained by inverting cdf (2.3) and is given in

Eq. (3.1). From cdf (2.3), the qth quantile function (qf) of ADL distribution is,

ξq =


µ+ κσ

[
1− 1[

q 1+κ2

κ2

]
]
, for q ∈

(
0, κ2

1+κ2

]
,

µ+ σ
κ

[
1

((1−q)(1+κ2))
− 1

]
, for q ∈

(
κ2

1+κ2 , 1
)
.

(3.1)

The median of ADL is obtained by putting q = 1/2 in (3.1). For q = κ2/(1 + κ2),

the qth quantile is given by ξq = µ. Hence, for given κ the location parameter is

given by µ̂ = ξ[κ2/(1+κ2)].

The cdf and qf can be useful for goodness-of-fit, simulation purposes and com-

puting measures of skewness and kurtosis. The skewness and kurtosis can be defined

based on the quantile function. The Galtons skewness (Galton (Galton (1883))) and

the Moors kurtosis (Moors (Moors (1988))) coefficients are, respectively

S =
ξ[6/8] − 2ξ[4/8] + ξ[2/8]

ξ[6/8] − ξ[2/8]
,

K =
ξ[7/8] − ξ[5/8] + ξ[3/8] − ξ[1/8]

ξ[6/8] − ξ[2/8]
.
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The distribution is symmetric, right (or left) skewed for S = 0, S > 0 (or S < 0),

respectively. As the value of kurtosis increases, the tail heaviness of the distribution

increases.

3.2 Moments

In this subsection we derive the rth moment ofADL distribution. LetX ∼ ADL(µ, σ, κ)

then the rth moment, µr = E(X − µ)r = E(Y r), 0 < r < 1 is given by

µr =
κ

σ(1 + κ2)

(∫ 0

−∞
yr

(
1− y

σκ

)−2
dx +

∫ ∞

0
yr

(
1 +

κy

σ

)−2
dx

)
,

=
σr

κr(1 + κ2)

(
1 + (−1)rκ2(r+1)

)
B(r + 1, 1− r), 0 < r < 1. (3.2)

Where B(a, b) is a beta function. It is clear that the moments of order 1 or greater

do not exist. Now we derive the rth absolute moment of ADL.

For 0 < r < 1, the rth absolute moment of ADL is given by

δr =
κ

σ(1 + κ2)

(∫ 0

−∞
(−y)r

(
1− y

σκ

)−2
dx +

∫ ∞

0
yr

(
1 +

κy

σ

)−2
dx

)
,

=
σr

κr(1 + κ2)

(
1 + κ2(r+1)

)
B(r + 1, 1− r), 0 < r < 1. (3.3)

In the next section we derive expressions for the entropy measure of the ADL.

3.3 Entropy

In this subsection we discuss the Rényi entropy of ADL distribution. Entropies

quantify the diversity, uncertainty, or randomness of a system and they can be useful

for studying index diversity in Ecology. Also it is used as a measure of entanglement

in quantum information.

An entropy of a random variable X is a measure of variation of the uncertainty. A

popular entropy measure is Rényi entropy (Rényi (1961)). Rényi entropy is defined

as follows

Hα =
1

1− α
log

(∫
fα(x) dx

)
, α > 0, α ̸= 1.

Now we derive Rényi entropy measure of ADL.

Hα =
1

1− α
log

(
κα

σα(1 + κ2)α

(∫ µ

−∞
[1− 1

σ κ
(x− µ)]−2α dx +

∫ ∞

µ
[1 +

κ

σ
(x− µ)]−2α dx

))
.
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Consider ∫
fα(x) dx =

κα

σα(1 + κ2)α

(
σκ

(2α− 1)
+

σ

κ(2α− 1)

)
,

=
1

(2α− 1)

(
κ

σ(1 + κ2)

)α−1

.

Then

Hα = log σ + log (1 + κ2)− log κ− 1

1− α
log (2α− 1). (3.4)

3.4 Order Statistics

For asymmetric distributions the measures of interest are median, quartiles, etc.

Order statistics are used to estimate these quantities. Here we give the distribution

of order statistics arising from ADL random sample. Let X1, · · · , Xn is a random

sample from ADL distribution and X1:n, · · · , Xn:n, denote the corresponding order

statistics. Then the probability density function of the rth order statistics is given

by

fr:n(x) =
f(x, µ, σ, κ)

B(r, n− r + 1)

n−r∑
i=0

(−1)i
(
n− r

i

)
(F (x))r+i−1, (3.5)

Inserting pdf (2.2) and cdf (2.3) in (3.5), we get

fr:n(x) =
n!

(r − 1)!(n− r)!

1

σκ

n−r∑
i=0

(−1)i
(
n− r

i

)(
κ2

1 + κ2

)r+i(
1− x− µ

σκ

)−(r+i+1)

, x < µ,

fr:n(x) =
n!

(r − 1)!(n− r)!

κ

σ

n−r∑
i=0

r+i−1∑
j=0

(−1)i+j

(
n− r

i

)(
r + i− 1

j

)
1

(1 + κ2)r+i

×
(
1 +

κ(x− µ)

σ

)−(r+i+1)

, x ≥ µ.

The c.d.f of the rth order statistics is given by

Fr:n(x) =
n∑

i=r

(
n

i

)
(F (x))i(1− F (x))n−i,

=

n∑
i=r

n−i∑
j=0

(−1)j
(
n

i

)(
n− i

j

)
(F (x))i+j , (3.6)
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Inserting cdf (2.2) in (3.7), we get

Fr:n(x) =



n∑
i=r

n−i∑
j=0

(−1)j
(
n

i

)(
n− i

j

)(
κ2

1 + κ2

)i+j (
1− x− µ

σκ

)−(i+j)

, x < µ,

n∑
i=r

n−i∑
j=0

(−1)j
(
n

i

)(
n− i

j

)(
1− 1

1 + κ2

(
1 +

κ

σ
(x− µ)

)−1
)i+j

, x ≥ µ.

(3.7)

In particular, the pdf of the smallest order statistics X1:n is obtained from (3.6), by

substituting r = 1, as follows

f1:n(x) =
nk

σ(1 + κ2)


(
1− κ2

1+κ2

(
1− x−µ

σκ

)−1
)n−1 (

1− x−µ
σκ

)−2
, x < µ,

1
(1+κ2)n−1

(
1 + κ

σ (x− µ)
)−(n+1)

, x ≥ µ.
(3.8)

Also, the pdf of the largest order statistics Xn:n is obtained from (3.6), by substi-

tuting r = n, as follows

fn:n(x) =
nk

σ(1 + κ2)


(

κ2

1+κ2

)n−1 (
1− x−µ

σκ

)−(n+1)
, x < µ,(

1− 1
1+κ2 [1 +

κ
σ (x− µ)]−1

)n−1
[1 + κ

σ (x− µ)]−2, x ≥ µ.

(3.9)

Also the cdf of the smallest order statistics X1:n is obtained from (3.8), by substi-

tuting r = 1, as follows

F1:n(x) =

1−
(
1− κ2

1+κ2 [1− x−µ
σκ ]−1

)n
, x < µ,

1− 1
(1+κ2)n

[1 + κ
σ (x− µ)]−n, x ≥ µ.

(3.10)

Also the cdf of the largest order statisticsXn:n is obtained from (3.8), by substituting

r = n, as follows,

Fn:n(x) =


(

κ2

1+κ2

)n
[1− x−µ

σκ ]−n, x < µ,(
1− 1

1+κ2 [1 +
κ(x−µ)

σ ]−1
)n

, x ≥ µ.
(3.11)

3.4.1 Moments of Order Statistic

In this section we derive the kth moment of rth order statistic Xr:n of ADL. qth

moment of rth order statistic Yr:n = Xr:n − µ is defined as

E(Y q
r:n) =

∫ ∞

−∞
yqfr:n(y) dy,
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E(Y q
r:n) =

n!

σκ(r − 1)!(n− r)!

∫ 0

−∞
yq

n−r∑
i=0

(−1)i
(
n− r

i

)(
κ2

1 + κ2

)r+i (
1− y

σκ

)−(r+i+1)
dx

+
n!

(r − 1)!(n− r)!

κ

σ

∫ 0

−∞
xq

n−r∑
i=0

r+i−1∑
j=0

(−1)i+j

(
n− r

i

)(
r + i− 1

j

)
1

(1 + κ2)r+i

×
(
1 +

κy

σ

)−(r+i+1)
dx,

=
n!

(r − 1)!(n− r)!
(σκ)q

n−r∑
i=0

(−1)i+q

(
κ2

1 + κ2

)r+i

B(q + 1, r + i− q)

+
n!

(r − 1)!(n− r)!

(σ
κ

)q
n−r∑
j=0

r+i−1∑
n=0

(−1)i+j

(
n− r

i

)(
r + i− 1

j

)
× 1

(1 + κ2)r+i
B(q + 1, r + i− q), r + i− q > 0.

4 Estimation

In this section we study the problem of estimating three unknown parameters,

Θ = (µ, σ, κ), of the ADL distribution. To estimate the parameter µ we use

the quantile estimation. Let X = (X1, · · · , Xn) be independent and identically

distributed samples from an ADL distribution with parameters Θ. The quantile

estimate of µ is given by µ̂ = ξ[κ2/(1+κ2)]. Given κ, the quantile estimator of µ is the

sample quantile of order κ2/(1+κ2), which is (for large n) the ([[nκ2/(1+κ2)]]+1)th

ordered observation, ([[c]] denoted the integral part of c). When the data are ap-

proximately symmetric the estimate of µ will be close to the median. The method of

maximum likelihood estimation can be employed to estimate Θ as described below.

To estimate Θ using maximum likelihood estimation where the likelihood function

is maximised to estimate the unknown parameters. We describe this method briefly

as follows.

The log-likelihood function of the data X takes the form

logL(Θ;X) = n log κ− n log(1 + κ2)− n log σ − 2S(µ, σ, κ)

where

S(µ, σ, κ) =
n∑

i=1

logSi(µ, σ, κ) =

n∑
i=1

log

[
1 +

κ

σ
(xi − µ)+ +

1

σ κ
(xi − µ)−

]
,
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and (x − µ)+ = (x − µ), if x > µ, and = 0 otherwise, and (x − µ)− = (µ − x), if

x ≤ µ, and = 0 otherwise.

Existence, uniqueness and asymptotic normality of maximum likelihood esti-

mators (MLEs) can be derived on the same lines as described in detail for an AL

distribution in (Kotz et al. (2001)).

MLEs of σ and κ for given µ = µ̂ are obtained by solving the score equations.

This leads to the following equations which are solved iteratively.

σ̂ =
2

n

n∑
i=1

κ̂(xi − µ̂)+ + 1
κ̂(xi − µ̂)−

Si

.

κ̂2 =

∑n
i=1(xi − µ̂)−/Si∑n
i=1(xi − µ̂)+Si

,

were Si(µ, σ, κ) =
[
1 + κ

σ (xi − µ)+ + 1
σ κ(xi − µ)−

]
.

In our illustrations, the maximisation of the likelihood is implemented using the

optim function of the R statistical software, applying the BFGS algorithm of optim

function (Nash (1990)) in R (R Core Team (2020)). Estimates of the standard

errors were obtained by inverting the numerically differentiated information matrix

at the maximum likelihood estimates. We discuss the performance of our numerical

maximisation algorithm using the simulated data sets in the next section.

5 Simulation

In this section we provide the simulation studies for various choices of parameters to

evaluate the performance of the estimation procedure. We generated 1000 samples,

each of size n = 50, 100 from the ADL distribution for µ = 0.5, σ = (0.5, 1) and

κ = (0.5, 1, 2) and then applied the algorithm to obtain the MLEs of the parameters.

The results from 1000 replications are presented in Table 1. It is clear from Table 1

that the estimation algorithm works satisfactorily for various choices of parameters



36 Journal of the Kerala Statistical Association

Table 1: Maximum likelihood estimates of (µ, σ, κ) for various choices of parameters

and n. SE stands for the asymptotic standard errors of the maximum likelihood

estimates and SD is the sample standard deviations.

n µ σ κ µ̂ σ̂ k̂ SE(µ̂) SD(µ̂) SE(σ̂) SD(σ̂) SE(κ̂) SD(κ̂)

50 0.5 0.5 0.5 0.53 0.49 0.55 0.02 0.02 0.03 0.04 0.05 0.06

1 0.47 0.99 0.55 0.01 0.02 0.06 0.03 0.04 0.07

0.5 1 0.54 0.49 1.07 0.01 0.01 0.04 0.05 0.05 0.08

1 0.44 0.98 1.08 0.02 0.02 0.06 0.06 0.08 0.08

0.5 2 0.28 0.51 2.05 0.01 0.01 0.04 0.04 0.08 0.09

1 -0.01 1.01 1.94 0.02 0.02 0.07 0.08 0.09 0.09

100 0.5 0.5 0.5 0.48 0.49 0.49 0.01 0.01 0.02 0.02 0.02 0.02

1 0.51 0.99 0.51 0.01 0.01 0.03 0.03 0.02 0.02

0.5 1 0.49 0.49 1.01 0.01 0.01 0.02 0.02 0.01 0.02

1 0.52 0.99 1.01 0.01 0.02 0.03 0.03 0.02 0.03

0.5 2 0.47 0.51 2.01 0.01 0.01 0.02 0.02 0.02 0.03

1 0.45 1.01 2.01 0.01 0.01 0.03 0.04 0.04 0.05

and the asymptotic standard errors of the maximum likelihood estimators agree well

with the sample standard deviations over the replications.

We also checked our algorithm for various choices of initial values of parameters

and sample size n. We also simulated data for varying parameters, especially to-

wards boundary regions. When (σ, κ) were all sufficiently away from zero, a fast

convergence was observed even for arbitrary initial values. When κ and σ were very

small, comparatively larger number of iterations were needed to achieve reasonable

convergence.

6 Applications

In this section, we considered four real data sets to illustrate the flexibility of our

proposed distribution. First one is of microarray gene expression dataset, whereas

the other three are financial datasets. We compared the performance of ADL with

asymmetric Laplace (AL), double Lomax (DL) and Gaussian distributions. We

used Akaike’s Information Criterion (AIC) (Akaike (1973) ; Burnham and Anderson

(1998)), Corrected Akaike information criterion (AICC)(Hurvich (1989)), Consistent
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Akaike information criterion (CAIC) (Bozdogan (1987)), Hannan-Quinn information

criterion (HQIC) (Hannan and Quinn (1979)), and Bayesian Information Criterion

(BIC) (Schwarz (1978)) to assess the appropriateness of ADL over the AL, DL and

Gaussian distributions. The AIC, AICC, CAIC, HQIC and BIC are respectively

given by,

AIC = −2logL+ 2K,

AICC = −2logL+
2Kn

n−K − 1
,

CAIC = −2logL+K(log(n) + 1),

HQIC = −2logL+K log(log(n)),

BIC = −2logL+K log(n).

where logL = log(Lf (Θ̂|x1, · · · , xn)) is the log-likelihood of the data x1, · · · , xn
under the probability distribution f , K is the number of parameters being estimated,

Θ̂ is the maximum likelihood estimate of the parameters of f and n is the sample

size. In most cases all of the above are of similar nature and give consistent results

for model selection. The best model is the one which yield smaller values for these

statistic and are considered to provide better fit to the data.

6.1 Microarray Gene Expression Data

In this section we apply the ADL distribution to model the distribution of a cDNA

dual dye NT2 3 microarray gene expression dataset. The microarray gene expression

intensities were normalized using (Lowess) locally weighted linear regression method

(Cleveland and Delvin (1988)). This method is capable of removing intensity de-

pendence in log2(Ri/Gi) values and it has been successfully applied to microarray

data (Yang et al. (2002)), where Ri is the red dye intensity and Gi is the green dye

intensity for the ith gene. Figure 6 is the box plots of intensities before and after

Lowess normalization. The descriptive statistics for NT2 3 microarray dataset with

16972 observations is given below in Table 2 and from the Table 2 we can see that

NT2 3 microarray dataset is positively skewed and highly peaked.
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Table 2: Descriptive statistics for NT2 3 microarray dataset

Min Max Mean Median SD Skewness Kurtosis

-2.865 2.564 0.011 -0.025 0.283 0.188 15.55

(a) (b)

Figure 6: Box plots of intensities from microarray Experiment NT2 3 (a) Before

normalization, (b) After loess normalization.

We fitted the asymmetric double Lomax (ADL), asymmetric Laplace (AL) and

Gaussian distributions to the normalized microarray intensities. The maximum

likelihood estimates of the parameters and standard errors (SE) are reported in Table

3. We also plotted the quantile-quantile (Q-Q) plots since they better emphasizes

the fit of the distribution in the tails.

Here we fitted Gaussian, AL, DL and ADL distributions to log-transformed

normalised intensities log2(Ri/Gi) from the microarray dataset. We obtained max-

imum likelihood estimates and their asymptotic standard errors for the parameters

of ADL(µ, σ, κ), AL(µ, σ, κ) and Gaussian N(µ, σ2) distributions for the array (see

Table 3 and Figure 7). Left panel of Figure 7 depicts a histogram of the gene expres-

sion data, the fitted ADL, AL, DL and Gaussian density functions evaluated at the
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(a) (b)

Figure 7: (a) Fitted ADL (red line), AL (cyan dash dot line), DL (blue dash line)

and Gaussian (green dotted line), (b) Q-Q plot of ADL (red circle), AL (cyan dash

dotted line), DL (blue dash line) and Guassian (green dotted line) to NT2 3.

Table 3: Application - maximum likelihood estimates and their standard errors for

ADL, AL, DL and Gaussian distributions for NT2 3 microarray dataset are given

in the table below.

µ̂ σ̂ κ̂ AIC AICC CAIC HQIC BIC

ADL -0.025 (0.007) 0.225 (0.003) 0.878 (0.005) 3402 3402 3428 3403 3425

AL -0.024 (0.003) 0.104 (0.001) 0.889 (0.004) 5218 5218 5258 5242 5256

DL -0.025 (0.009) 0.066 (0.003) - 3640 3641 3658 3641 3656

Guassian 0.011 (0.002) 0.283 (0.001) - 6003 6004 6021 6004 6019
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MLEs and right panel of Figure 7 depicts a Q-Q plot of the gene expression data, the

fitted ADL, AL, DL and Guassian density functions evaluated at the MLEs. Notice,

the parameter κ is a comparable measure of skewness across the datasets regardless

of the scale. From figure 7 we can see that the ADL(µ, σ, κ) distribution captures

three main features of the microarray data; skewness, peakedness and heavier tails.

It can be seen in the right panel of Figure 7 that the fitted quantiles for ADL and

DL fall close to the sample quantiles compared to that of AL and Gaussian. This

clearly shows an improvement in the model fit over DL, AL and Gaussian. Only a

few points out of the thousands of observations deviate significantly from a straight

line and the fit of the distributions would be improved if extreme observations are

removed. This indicates a good fit to the ADL and some improvement over DL.

DL does not captures the skewness but it account the peakedness and heavier tail

of the data.

From Table 3 we can see that the AIC, AICC, CAIC, HQIC and BIC for the

ADL(µ, σ, κ) had a lower value compared to DL, AL and Gaussian distributions.

A smaller values indicates a better fit, and hence, ADL seems to fit the data better

than DL, AL or Gaussian distributions.

6.2 Currency Exchange Rate Data

In this section we apply the ADL distribution to model the distribution of daily

US dollar-Indian rupee exchange rate data from 1st January 2010 to 31st Decem-

ber 2019. Data is collected from the official website of Reserve Bank of India and

https://www.exchangerates.org.uk/. The basic assumption of financial modelling

has been the normality assumption for log(X(t+1)/Xt). Usually currency exchange

rate data exhibits heavier tails, peakedness and asymmetry. To illustrate the ap-

plication of ADL for this financial data, the histogram of the transformed data

(log(X(t+1)/Xt)) is plotted along with pdfs of distributions of ADL, AL, DL and

Gaussian. The descriptive statistics and maximum likelihood estimates of the pa-

rameters with standard errors (SE) are presented in Table 4 and Table 5 respectively.

We also plotted the quantile-quantile (Q-Q) plots since they better emphasizes the
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Table 4: Descriptive statistics for US dollar to Indian rupee exchange rate

(log(X(t+1)/Xt)) dataset

Min Max Mean Median SD Skewness Kurtosis

-0.031 0.040 0.0002 0.001 0.005 0.220 8.616

Table 5: Maximum likelihood estimates and their standard errors for ADL,

AL, DL and Gaussian distributions for US dollar to Indian rupee exchange rate

(log(X(t+1)/Xt)) dataset are given in the table below.

µ̂ σ̂ κ̂ AIC AICC CAIC HQIC BIC

ADL 0.001 (0.001) 0.041 (0.013) 0.977 (0.022) 9023 9024 9044 9024 9041

AL 0.001 (0.003) 0.004 (0.001) 0.963 (0.021) 9165 9165 9186 9165 9183

DL 0.001 (0.001) 0.098(0.023) - 9664 9665 9678 9665 9676

Guassian 0.001 (0.001) 0.005 (0.001) - 9942 9943 9956 9943 9954

fit of the distribution in the tails. We used AIC, AICC, CAIC, HQIC and BIC

to assess the appropriateness of ADL over the AL, DL and Gaussian distributions.

Figure 8 depicts a histogram of the currency exchange rate data, the fitted ADL,

AL , DL and Gaussian density functions evaluated at the MLEs and from Table 5

we can see that the AIC, AICC, CAIC, HQIC and BIC for the ADL(µ, σ, κ) had

a lower value compared to DL, AL and Gaussian distributions. Smaller values for

these information criteria’s indicates better fit, and hence, ADL fit the data better

than DL, AL or Gaussian distributions.

6.3 SENSEX Data Analysis

In this subsection we apply the ADL to model the distribution of daily S & P SEN-

SEX data of Bombay stock exchange for the period 1 Jan 2010 to 31 December 2019,

collected from the website of BSE, India. The descriptive statistics and maximum

likelihood estimates of the parameters with standard errors (SE) are reported in

Table 6 and Table 7.
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(a) (b)

Figure 8: (a) Fitted ADL probability density function (red line), AL density func-

tion(cyan dash dot line), DL (blue dash line) and Gaussian density function (green

dotted line) to the US dollar to Indian rupee exchange rate (log(X(t+1)/Xt))(left

panel),(b) Q-Q plot of ADL (red circle), AL (cyan dash dotted line), DL (blue dash

line) and Gaussian (green dotted line) density functions (right panel).



Asymmetric Double Lomax Distribution 43

Table 6: Descriptive statistics for S & P SENSEX dataset

Min Max Mean Median SD Skewness Kurtosis

-0.053 0.067 0.0003 0.001 0.011 0.044 5.472

(a) (b)

Figure 9: (a) Fitted ADL probability density function (red line), AL density func-

tion(cyan dash dot line), DL (blue dash line) and Gaussian density function (green

dotted line) to the S & P SENSEX data (log(X(t+1)/Xt)) (left panel),(b) Q-Q plot

of ADL (red circle), AL (cyan dash dotted line), DL (blue dash line) and Gaussian

(green dotted line) density functions (right panel).

From Figure 9 we observe a best fit for ADL and from Table 7 we can see that

the AIC, AICC, CAIC, HQIC and BIC for the ADL(µ, σ, κ) had a lower value

compared to DL, AL and Gaussian distributions. Smaller values indicates a better

fit, and hence, ADL fit the data better than DL, AL or Gaussian distributions.

6.4 Gold Price Data Analysis

In this section we illustrate the application of ADL distribution to model the distri-

bution of weekly gold price per gram for the period, 30 December 2009 to 3 January
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Table 7: Maximum likelihood estimates and their standard errors for ADL, AL,

DL and Gaussian distributions for S & P SENSEX dataset are given in the table

below

µ̂ σ̂ κ̂ AIC AICC CAIC HQIC BIC

ADL 0.001 (0.001) 0.113 (0.003) 1.008 (0.005) 5053 5054 5074 5071 5071

AL 0.001 (0.001) 0.008 (0.001) 1.017 (0.024) 5871 5872 5892 5872 5589

DL 0.001 (0.001) 0.006 (0.001) - 5871 5872 5886 5872 5884

Guassian 0.001 (0.001) 0.011 (0.001) - 6942 6943 6956 6943 6954

Table 8: Descriptive statistics for weekly gold price (per gram) data (log(X(t+1)/Xt))

Min Max Mean Median SD Skewness Kurtosis

-0.098 0.071 0.002 0 0.017 -0.377 6.859

2020, collected from the website www.keralagold.com. Descriptive statistics is given

in Table 8 and maximum likelihood estimates of the parameters and standard errors

(SE) are reported in Table 9.

From Figure 10 we observe the goodness of fit for ADL, compared to AL, DL

and Gaussian density functions and is confirmed by the lower values for the AIC,

AICC, CAIC, HQIC and BIC for the ADL(µ, σ, κ) compared to DL, AL and

Gaussian distributions.

Table 9: Maximum likelihood estimates and their standard errors for ADL, AL, DL

and Gaussian distributions for weekly gold price (per gram) dataset (log(X(t+1)/Xt))

are given in the table below

µ̂ σ̂ κ̂ AIC AICC CAIC HQIC BIC

ADL 0.001 (0.001) 0.143 (0.003) 0.935(0.021) 1154 1154 1170 1153 1167

AL 0.001 (0.001) 0.013 (0.001) 0.939 (0.034) 1266 1266 1282 1266 1279

DL 0.001 (0.001) 0.008(0.001) - 1230 1231 1241 1231 1239

Guassian 0.002 (0.002) 0.018 (0.001) - 1280 1281 1291 1290 1299
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(a) (b)

Figure 10: (a) Fitted ADL probability density function (red line), AL density func-

tion(cyan dash dot line), DL (blue dash line) and Gaussian density function (green

dotted line) to the weekly gold price (per gram) data (log(X(t+1)/Xt))(left panel),

(b) Q-Q plot of ADL (red circle), AL (cyan dash dotted line), DL (blue dash line)

and Gaussian (green dotted line) density functions (right panel).
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7 Conclusion

Punathumparambath and Kulathinal (2015) introduced the double Lomax distribu-

tion (DL), which is a flexible distribution that can adjust for heavy tails. Cauchy

distribution which is the ratio of i.i.d standard normal is log symmetric and heavy

tailed, in the same way the double Lomax random variable is the ratio of two

i.i.d. classical Laplace variables is log symmetric and heavy tailed. We created the

asymmetric double Lomax (ADL) distribution since DL is not ideal for modelling

asymmetric data. ADL is beneficial in analysing datasets that are asymmetric,

leptokurtic, and having heavy tail structure, these are some of the common charac-

teristics of datasets in financial modelling and microarray modelling.

We used the proposed probability distribution, a generalisation of the asymmet-

ric Laplace distribution, to analyze differential gene expression and financial data in

this article. Because the distribution of normalised gene expressions, while similar

across arrays, is frequently far from normal, the distribution reveals larger tails and

asymmetry of variable degrees even after normalisation. The model proposed in this

article can be used to simulate the impulsiveness and skewness that are required for

gene expression data. Our distribution is a proper distribution to accept outliers in

the data since it is heavy-tailed. When it comes to microarray gene expression data,

the number of genes that are differentially expressed is typically a small percentage

of the total number of genes analysed. As a result, the probability distribution

given in this research will be highly useful in situations involving gene expression

data estimation and detection.

For financial modelling, the data on currency exchange rate, BSE SENSEX and

gold price is observed to have better fit with ADL than AL, DL and Gaussian

distributions. ADL provides a lot of versatility in terms of tail behaviour and

peakedness, and it may be used on data from a variety of sources. The ADL gives

the Laplace distribution flexibility in terms of skewness and tail behaviour. The

Laplace distribution, as well as its various skewed and heavy-tailed generalisations,

offers a viable alternative to Gaussian-based stochastic models.
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