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ABSTRACT

In this paper, we introduce a new generalization of univariate and bivariate

modified discrete Weibull distribution. Various properties of univariate gener-

alized modified discrete Weibull distribution such as survival function, prob-

ability mass function, hazard rate function, probability generating function,

moment generating function are derived. The joint distribution function, joint

probability mass function, marginal distributions, moment generating function,

conditional distribution of proposed bivariate distribution are derived. Param-

eters of the distributions are estimated using Maximum likelihood estimation.

The use of these distributions are illustrated using real life data sets.

Key words and Phrases: Bivariate distribution, Discrete distribution General-

ized modified Weibull distribution, Maximum likelihood estimation.

1 Introduction

There are many fields in which researchers regularly encounter variables that are

discrete in nature as part of their research. Therefore, continuous models may be

unsuitable in such cases and the observed values can be recorded in a way that

makes discrete models more appropriate in such cases. A number of continuous
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lifetime distributions have been derived over the last few decades, and some of them

have been studied and modified to suit various applications.There are comparatively

fewer studies on discrete distributions than there are on continuous distributions.

So, there is a need for more studies in this field.

In recent years, many researchers have focused their attention on the problem of

constructing discrete analogues of continuous probability distributions. Chakraborty

(2015) provides discrete analogues to many distributions that are known to exist. It

has been proposed by Nakagawa and Osaki (1975), Stein and Dattero (1984) as well

as Padgett and Spurrier (1985) that there are three types of discrete Weibull dis-

tributions. A two-parameter discrete gamma distribution was introduced by Yang

(1994). Roy (2003) proposed the discrete normal distribution. Roy (2004) intro-

duced the discrete Rayleigh distribution. The discrete Burr distribution and the

discrete Pareto distribution were proposed by Krishna and Singh (2009). Jazi et al

(2010) proposed a discrete analogue the inverse Weibull distribution. A discrete ver-

sion of the continuous modified Weibull distribution (Lai et al, 2003) was introduced

by Noughabi et al (2011). Bebbington et al (2012) proposed a discrete analogue of

additive Weibull. Al-Huniti and Al-Dayian (2012) proposed discrete Burr type III.

Bakouch et al (2012) introduced discrete Lindley distribution. A discrete Weibull

geometric distribution is proposed by Jayakumar and Babu (2017). Also Jayakumar

and Babu (2019) introduced discrete additive Weibull geometric distribution.

Over a long period of time, bivariate distributions have attracted the attention

of a number of researchers. In many fields, it is important to be able to model data

based on these distributions. There are many real life situations in which discrete

bivariate data arises that are often highly correlated with one another. There are

various bivariate discrete distributions in the literature that can be studied. Kocher-

lakota and Kocherlakota (1992) discussed about many different discrete bivariate

distributions. It is quite natural for discrete bivariate data to emerge in many dif-

ferent situations in real life. Based on the minimization and maximization methods

Lee and Cha (2015) proposed two general classes of discrete bivariate distributions.

A four-parameter bivariate discrete generalized exponential distribution proposed
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by Nekoukhou and Kundu (2017). Kundu and Nekoukhou (2018a) proposed an

univariate and a bivariate geometric discrete generalized exponential distributions.

Kundu and Nekoukhou (2018b) in their paper, discussed about a new bivariate dis-

crete Weibull distribution which can be taken as a discrete analogue of Marshall and

Olkin bivariate Weibull distribution (see, Kundu and Gupta, 2013). El-Morshedy

et al (2020) introduced bivariate discrete exponentiated Weibull distribution. Eliwa

and El-Morshedy (2018) proposed a bivariate discrete inverse Weibull distribution.

Shibu and Beegum (2021) introduced a bivariate discrete modified Weibull distribu-

tion, which is a discrete analogue of the new bivariate modified Weibull distribution

(see, El-Bassiouny et al, 2018).

Here we use a new method to find the joint survival function of the both univari-

ate and bivariate discrete modified Weibull distribution. The rest of this study is

arranged as follows. Section 2 discusses some preliminaries. Section 3 introduces the

bivariate extension of the discrete modified Weibull distribution and its properties.

Section 4 contains the maximum likelihood estimation of the bivariate distribution

and section 5 involves data analysis. Section 6 devotes to simulation study of the

bivariate generalized discrete modified Weibull distribution, followed by conclusion

in Section 7.

2 Preliminaries

Consider a sequence of Bernoulli trials in which the i-th trial has probability of

success ν
i , 0 < ν ≤ 1, i ∈ {1, 2, . . . }. Let the trails are independent. Let K

denote the trial number on which the first success occurs. Then the probability

mass function and probability generating function of random variable K is given by

P (K = k) = (1− ν)

(
1− ν

2

)
. . .

(
1− ν

k − 1

)
ν

k

=
(−1)k−1

k!
ν(ν − 1) . . . (ν − k + 1)

(2.1)
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for k = 1, 2, . . . and

hK(s) = E(sK)

= 1− (1− s)ν , s ∈ [0, 1],

respectively. (see, Dolati et. al, 2014, Mirhosseini et. al 2015, Pathak and Vel-

laisamy, 2020)

2.1 Univariate Generalized Discrete Modified Weibull Distribution

Consider that {U1, U2, . . . } a sequence of mutually independent and identically

distributed random variables, where Ui ∼ DMW (q1, θ, c) for i ∈ {1, 2, . . . }. De-

fine X = min(U1, U2, . . . , Uk) . Then X is said to follow univariate generalized

discrete modified Weibull distribution with parameters q1, θ, c and ν, i.e., X ∼

GDMW (q1, θ, c, ν). Using equation (2.1), we can derive the survival function of

GDMW (q1, θ, c, ν) as

SGDMW (x) = 1− (1− qx
θcx

1 )ν

=
∞∑
n=1

(−1)n+1 ν(ν − 1) . . . (ν − (n− 1))

n!
qnx

θcx

1 .

3 Bivariate Generalized Discrete Modified Weibull Dis-

tribution

Consider that {U1, U2, . . . } and {V1, V2, . . . } are two sequences of mutually inde-

pendent and identically distributed random variables, where Ui ∼ DMW (q1, θ, c)

and Vi ∼ DMW (q2, θ, c) for i ∈ {1, 2, . . . }. Define X = min(U1, U2, . . . , Uk) and

Y = min(V1, V2, . . . , Vk). Then (X,Y ) is said to follow bivariate generalized dis-

crete modified Weibull distribution with parameters q1, q2, θ, c and ν, (X,Y ) ∼

BGDMW (q1, q2, θ, c, ν).



Bivariate Generalized Discrete Modified Weibull Distribution 5

3.1 Joint Survival Function

The joint survival function of bivariate generalized discrete modified Weibull distri-

bution with parameters q1, q2, θ, c and ν is given by

S(x, y) =
∞∑
n=1

(−1)n+1 ν(ν − 1) . . . (ν − (n− 1))

n!
qnx

θcx

1 qny
θcy

2 .

Proof. Let (X,Y ) ∼ BGDMW (q1, q2, θ, c, ν), then the joint survival function can

be derived as,

S(x, y) = P (X > x, Y > y)

= P (min(U1, U2, . . . , Uk) > x,min(V1, V2, . . . , Vk) > y)

=

∞∑
k=1

(P (Ui > x)P (Vi > y))kP (K = k)

= hK(qx
θcx

1 qy
θcy

2 )

= 1− (1− qx
θcx

1 qy
θcy

2 )ν

=
∞∑
n=1

(−1)n+1 ν(ν − 1) . . . (ν − (n− 1))

n!
qnx

θcx

1 qny
θcy

2 .

Hence the proof.

The joint survival function is plotted for two different sets of values of the pa-

rameters.

3.2 Joint Probability Mass Function

If (X,Y ) ∼ BGDMW (q1, q2, θ, c, ν), then joint probability mass function of (X,Y )

is given by

f(x, y) =
∞∑
n=1

1∑
i=0

1∑
j=0

(−1)n+i+j+2

n!
(ν(ν − 1) . . . (ν − (n− 1)))q

n(x+i)θcx+i

1 q
n(y+j)θcy+j

2 .

Proof. Consider a bivariate generalized discrete modified Weibull distribution with

parameters q1, q2, θ, c and ν.

We have

f(x, y) = S(x, y)− S(x, y + 1)− S(x+ 1, y) + S(x+ 1, y + 1).
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Figure 1: The joint SF of a BGDMW distribution with parameters q1 = 0.2, q2 =

0.3, θ = 0.1, c = 1.09, ν = 0.3.

Thus, the joint probability mass function of (X,Y ) is derived as

f(x, y) = (1− qx
θcx

1 q
(y+1)θc(y+1)

2 )ν + (1− q
(x+1)θc(x+1)

1 qy
θcy

2 )ν

− (1− qx
θcx

1 qy
θcy

2 )ν − (1− q
(x+1)θc(x+1)

1 q
(y+1)θc(y+1)

2 )ν

=
∞∑
n=1

1∑
i=0

1∑
j=0

(−1)n+i+j+2

n!
(ν(ν − 1) . . . (ν − (n− 1)))q

n(x+i)θcx+i

1 q
n(y+j)θcy+j

2 .

In figure 3 and 4 the joint probability mass function (PMF) is plotted for two

different sets of values of the parameters.

3.3 Joint Distribution Function

Let (X,Y ) ∼ BGDMW (q1, q2, θ, c, ν), then joint distribution function of (X,Y ) is

F (x, y) = 3−
∞∑
n=1

1∑
i=0

1∑
j=0

i=j ̸=0

(−1)n+1

n!
(ν(ν − 1) . . . (ν − (n− 1)))qni

θci

1 qnj
θcj

2 .

Proof. The distribution function of a bivariate generalized discrete modified Weibull
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Figure 2: The joint SF of a BGDMW distribution with parameters q1 = 0.2, q2 =

0.3, θ = 0.1, c = 1.2, ν = 0.3.

distribution with parameters q1, q2, θ, c and ν can be derived as

F (x, y) = F1(x) + F2(y) + S(x, y)− 1

= (1− qx
θcx

1 )ν + (1− qy
θcy

2 )ν + (1− qx
θcx

1 qy
θcy

2 )ν

= 3−
∞∑
n=1

1∑
i=0

1∑
j=0

i=j ̸=0

(−1)n+1

n!
(ν(ν − 1) . . . (ν − (n− 1)))qni

θci

1 qnj
θcj

2 .

3.4 Conditional Survival Function of X given Y > y

If (X,Y ) ∼ BGDMW (q1, q2, θ, c, ν), then the conditional survival function of X

given Y > y is given by

SX/Y >y(x) =
1− (1− qx

θcx
1 qy

θcy

2 )ν

1− (1− qy
θcy

2 )ν
.

Proof. Let (X,Y ) be bivariate generalized discrete modified Weibull distribution

with parameters q1, q2, θ, c and ν, then the conditional survival function of X given
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Figure 3: The joint PMF of a BGDMW distribution with parameters q1 = 0.2, q2 =

0.3, θ = 0.1, c = 1.09, ν = 0.3.

Y > y can be obtained as

SX/Y >y(x) = P (X > x/Y > y)

=
P (X > x, Y > y)

P (Y > y)

=
1− (1− qx

θcx
1 qy

θcy

2 )ν

1− (1− qy
θcy

2 )ν
.

3.5 Conditional survival function of X given Y > y

If (X,Y ) is bivariate generalized discrete modified Weibull distribution with pa-

rameters q1, q2, θ, c and ν.The conditional distribution function of X given Y ≤ y

is

FX/Y≤y(x) = 1 +
(1− qx

θcx
1 )ν

(1− qy
θcy

2 )ν
+

(1− qx
θcx

1 qy
θcy

2 )ν

(1− qy
θcy

2 )ν

Proof. Let (X,Y ) ∼ BGDMW (q1, q2, θ, c, ν), then the conditional distribution of
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Figure 4: The joint PMF of a BGDMW distribution with parameters q1 = 0.2, q2 =

0.3, θ = 0.1, c = 1.2, ν = 0.3.

X given Y ≤ y is

FX/Y≤y(x) = P (X ≤ x/Y ≤ y)

=
P (X ≤ x, Y ≤ y)

P (Y ≤ y)

=
(1− qx

θcx
1 qy

θcy

2 )ν + (1− qx
θcx

1 )ν + (1− qy
θcy

2 )ν

(1− qy
θcy

2 )ν

= 1 +
(1− qx

θcx
1 )ν

(1− qy
θcy

2 )ν
+

(1− qx
θcx

1 qy
θcy

2 )ν

(1− qy
θcy

2 )ν
.

3.6 Conditional PMF of X given Y = y

The conditional pmf of X given Y = y is given by

fX/Y=y(x) =

∑∞
n=1

∑1
i=0

∑1
j=0

(−1)n+i+j+2

n! (ν(ν − 1) . . . (ν − (n− 1)))q
n(x+i)θcx+i

1 q
n(y+j)θcy+j

2∑∞
n=1

∑1
j=0(−1)n+j+2 ν(ν−1)...(ν−(n−1))

n! q
n(y+j)θcy+j

2

.

Proof. The proof is trivial.
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Joint Hazard Rate Function

If (X,Y ) ∼ BGDMW (q1, q2, θ, c, ν), the joint hazard rate function of (X,Y ) is given

by

h(x, y) = 1−1− (1− qx
θcx

1 q
(y+1)θcy+1

2 )ν − (1− q
(x+1)θcx+1

1 qy
θcy

2 )ν + (1− q
(x+1)θcx+1

1 q
(y+1)θcy+1

2 )ν

1− (1− qx
θcx

1 qy
θcy

2 )ν

Proof. The proof is trivial.

The joint hazard rate function for a parameter set q1 = 0.2, q2 = 0.3, θ = 0.1, c =

1.09 and ν = 0.3 is given in figure 5.

Figure 5: The joint HRF of a BGDMW distribution with parameters q1 = 0.2, q2 =

0.3, θ = 0.1, c = 1.09, ν = 0.3.

Theorem 3.1. If (X,Y ) ∼ BGDMW (q1, q2, θ, c, ν) then min(X,Y ) ∼ GDMW (q1q2, θ, c, ν).

Proof. Let (X,Y ) is bivariate generalized discrete modifiedWeibull distribution with

parameters q1, q2, θ, c and ν

P (min(X,Y ) > s) = P (X > s, Y > s)

=

∞∑
k=1

(P (Ui > s)P (Vi > s))kP (K = k)

= hk((q1q2)
sθcs)

= 1− (1− (q1q2)
sθcs)ν .

Thus min(X,Y ) ∼ GDMW (q1q2, θ, c, ν).
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4 Estimation

4.1 Maximum Likelihood Estimation

To estimate unknown parameters of bivariate generalized discrete modified Weibull

distribution using maximum likelihood estimation, consider a sample of size m,

{(x1, y1), (x2, y2), ..., (xm, ym)} from bivariate generalized discrete modified Weibull

distribution with parameters q1, q2, θ, c and ν.

The likelihood function l(x; q1, q2, θ, c, ν) is given by

l(x; q1, q2, θ, c, ν) =
m∏
i=1

f(xi, yi).

Thus the log likelihood function L,

L =
m∑
i=1

ln[
(
1− q

xθ
i c

xi

1 q
(yi+1)θc(yi+1)

2

)ν
+
(
1− q

(xi+1)θc(xi+1)

1 q
yθi c

yi

2

)ν
−
(
1− q

xθ
i c

xi

1 q
yθi c

yi

2

)ν − (
1− q

(xi+1)θc(xi+1)

1 q
(yi+1)θc(yi+1)

2

)ν
].

∂L

∂ν
=

m∑
i=1

g1(xi + 1, yi, q1, q2, θ, c, ν) + g1(xi, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)

−
m∑
i=1

g1(xi, yi, q1, q2, θ, c, ν) + g1(xi + 1, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)
.

∂L

∂θ
=

m∑
i=1

g2(xi, yi, q1, q2, θ, c, ν) + g2(xi + 1, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)

−
m∑
i=1

g2(xi + 1, yi, q1, q2, θ, c, ν) + g2(xi, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)
.

∂L

∂c
=

m∑
i=1

g3(xi, yi, q1, q2, θ, c, ν) + g3(xi + 1, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)

−
m∑
i=1

g3(xi + 1, yi, q1, q2, θ, c, ν) + g3(xi, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)
.
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∂L

∂q1
=

m∑
i=1

g4(xi, yi, q1, q2, θ, c, ν) + g4(xi + 1, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)

−
m∑
i=1

g4(xi + 1, yi, q1, q2, θ, c, ν) + g4(xi, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)

∂L

∂q2
=

m∑
i=1

g5(xi, yi, q1, q2, θ, c, ν) + g5(xi + 1, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)

−
m∑
i=1

g5(xi + 1, yi, q1, q2, θ, c, ν) + g5(xi, yi + 1, q1, q2, θ, c, ν)

f(xi, yi)

where g1(x, y, q1, q2, θ, c, ν) = (1− qx
θcx

1 qy
θcy

2 )ν ln(1− qx
θcx

1 qy
θcy

2 ),

g2(x, y, q1, q2, θ, c, ν) = ν(1−qx
θcx

1 qy
θcy

2 )ν−1qx
θcx

1 qy
θcy

2 (xθcxln(x+q1)+yθcyln(y+q2)),

g3(x, y, q1, q2, θ, c, ν) = ν(1− qx
θcx

1 qy
θcy

2 )ν−1qx
θcx

1 qy
θcy

2 ln(qx
θ+1cx−1

1 qy
θ+1cy−1

2 ),

g4(x, y, q1, q2, θ, c, ν) = ν(1−qx
θcx

1 qy
θcy

2 )ν−1xθcxqx
θcx−1

1 qy
θcy

2 and g5(x, y, q1, q2, θ, c, ν) =

ν(1− qx
θcx

1 qy
θcy

2 )ν−1yθcyqx
θcx

1 qy
θcy−1

2 .

The maximum likelihood estimators of the parameters q1, q2, θ, c and ν can be

obtained by solving these five non linear equations. The solution of these equations

are not easy to solve. We need a numerical technique to get the maximum likelihood

estimators.

5 Data Analysis

In this section we discuss maximum likelihood estimators of the parameters of

BGDMW distribution using two real life data sets and compare the new bivariate

discrete modified Weibull distribution with the bivariate discrete exponential distri-

bution, the bivariate discrete Rayleigh distribution, the bivariate discrete Weibull

distribution proposed by Kundu and Nekoukhou (2018b). and bivariate discrete

modified Weibull distribution proposed by Shibu and Beegum (2021) using max-

imized Log-Likelihood (-L), Akaike information criterion (AIC), corrected Akaike
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information criterion (AICc), Bayesian information criterion (BIC) and Hannan-

Quinn information criterion (HQC). Here the maximum likelihood estimates of pa-

rameters are obtained by limited memory quasi Newton algorithm (Byrd et al, 1995).

Data 1

The data set given in Table 1 consists of a football match scored in Italian football

match (Series A) during 1996 to 2011, between ACF Fiorentina(X1) and Juventus

(X2).

Table 1: The Score data between ACF Fiorentina(X1) and Juventus (X2)

Obs. Match Date X1 X2 Obs. Match Date X1 X2

1 25/10/2011 1 2 14 16/02/2002 1 2

2 17/04/2011 0 0 15 19/12/2001 1 1

3 27/11/2010 1 1 16 12/05/2001 1 3

4 06/03/2010 1 2 17 06/01/2001 3 3

5 17/10/2009 1 1 18 21/04/2000 0 1

6 24/01/2009 0 1 19 18/12/1999 1 1

7 31/08/2008 1 1 20 24/04/1999 1 2

8 02/03/2008 3 2 21 12/12/1998 1 0

9 07/10/2007 1 1 22 21/02/1998 3 0

10 09/04/2006 1 1 23 04/10/1997 1 2

11 04/12/2005 1 2 24 22/02/1997 1 1

12 09/04/2005 3 3 25 28/09/1996 0 1

13 10/11/2004 0 1 26 23/03/1996 0 1

The values for -L, AIC, AICc, BIC and HQC of new bivariate discrete modified

Weibull distribution less than the values corresponding to the discrete exponential

distribution, discrete Rayleigh distribution, discrete Weibull distribution and dis-

crete modified Weibull distribution. Values are provided in Table 2. Thus we can

say that the new bivariate discrete modified Weibull distribution provide better fit
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Table 2: The MLEs,-L,AIC,AICc,BIC and HQIC values for the data

MLEs -L AIC AICc BIC HQIC

BDE q0=0.652,q1=0.812,q2=0.713 75.35 156.70 157.79 160.47 157.79

BDR q0=0.790,q1=0.872,q2=0.905 63.99 133.98 135.07 137.75 135.07

BDW q0=0.99, q1=0.781,q2=0.952, 293.08 594.16 596.07 599.19 595.61

θ=4.98

BDMW q0=0.95, q1=0.895,q2=0.939, 67.51 149.01 148.01 151.3 146.83

θ=0.803, c=2.00

BGDMW q1=0.888,q2=0.92, ν = 0.687, 65.19 140.38 143.38 146.67 142.19

θ=1.213,c=2.251

than the respective distributions.

Data 2

The data represented in Table 3 is reported in Davis (2002), and it represents the

eccacy of steam inhalation in the treatment of common cold symptoms (0 = no

symptoms; 1 = mild symptoms; 2 = moderate symptoms; 3 = severe symptoms).

The -L, AIC, AICc, BIC and HQC of the new bivariate discrete modified Weibull

distribution has lesser value than the values corresponding to the discrete exponen-

tial distribution, discrete Weibull distribution and discrete modified Weibull distri-

bution. Values are provided in Table 4. Thus we can say that the new bivariate

discrete modified Weibull distribution provide better fit than the respective distri-

butions.

6 Simulation Study

Consider a bivariate random variable (X,Y ) with joint cumulative distribution func-

tion FX,Y (x, y). Statistically independent standard uniform variables U1 and U2,
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Table 3: Nasal drainage severity score.

Obs. Day 1 (X1) Day 2 X2 Obs. Day 1 (X1) Day 2 (X2)

1 1 1 16 2 1

2 0 0 17 1 1

3 1 1 18 2 2

4 1 1 19 3 1

5 0 2 20 1 1

6 2 0 21 2 1

7 2 2 22 2 2

8 1 1 23 1 1

9 3 2 24 2 2

10 2 2 25 2 0

11 1 0 26 1 1

12 2 3 27 0 1

13 1 3 28 1 1

14 2 1 29 1 1

15 2 3 30 3 3

U = (U1, U2) are obtained from the following equations

u1 = FX(x)

u2 = FY/X=x(y)

where u1 and U2 are samples from the U space, FX(x) is the distribution function

of X and FY/X=x(y) is the conditional distribution function of Y given X = x. The

conditional distribution FY/X=x(y) be obtained from the equation

FY/X=x(y) = P (Y ≤ y/X = x)

=
1

fX(x)

∑
t≤y

f(x, t),

where fX(x) is the marginal density of X,

fX(x) = (1− q
(x+1)θc(x+1)

1 )ν − (1− qx
θcx

1 )ν
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Table 4: The MLEs,-L,AIC,AICc,BIC and HQIC values for the data

MLEs -L AIC AICc BIC HQIC

BDE q0=0.846,q1=0.792,q2=0.693 88.00 182.00 182.92 186.20 183.34

BDW q0=0.932, q1=0.998,q2=0.933, 97.66 203.32 204.92 208.92 205.11

θ=3.66

BGDMW q1=0.976, q2=0.973,ν=0.765, 73.89 157.77 160.27 164.78 160.02

θ=2.327,c=1.61

and ∑
t≤y

f(x, t) =
∑
t≤y

S(x, t)− S(x+ 1, t)− S(x, t+ 1) + S(x+ 1, t+ 1)

= S(x, 0)− S(x+ 1, 0)− S(x, y + 1) + S(x+ 1, y + 1)

= (1− q
(x+1)θc(x+1)

1 )ν − (1− qx
θcx

1 )ν

+ (1− qx
θcx

1 q
(y+1)θc(y+1)

2 )ν − (1− q
(x+1)θc(x+1)

1 q
(y+1)θc(y+1)

2 )ν .

Thus

FY/X=x(y) = 1− (1− q
(x+1)θc(x+1)

1 q
(y+1)θc(y+1)

2 )ν − (1− qx
θcx

1 q
(y+1)θc(y+1)

2 )ν

(1− q
(x+1)θc(x+1)

1 )ν − (1− qx
θcx

1 )ν
.

The random variable (X,Y ) is obtained by inverting these equations successively.

Here we study the performance of the MLEs of bivariate generalized discrete mod-

ified Weibull distribution with parameters q1 = 0.67, q2 = 0.32, θ = 0.878, c = 1.1

and ν = 0.9 using Monte Carlo simulation for various sample sizes and for selected

parameter values. Now we choose the parameter values as q1, q2, θ, c and ν. After

simulating the samples we estimate the parameters. Also the bias is obtained for

each case. The estimated parameter values and their bias are given in Table 5.

7 Conclusion

We introduced a new bivariate generalized discrete modified Weibull distribution.

Here we used a new method to find the joint survival function of the distribution and
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Table 5: Simulation study for the parameter set: q1 = 0.67, q2 = 0.32, θ = 0.878,

c = 1.1 and ν = 0.9.

Sample Size q1 = 0.67 q2 = 0.32 θ = 0.878 c = 1.1 ν = 0.9

n=40 estimate 0.75997 0.508619 1.290315 1.188987 0.826156

bias -0.089973 -0.188619 -0.412315 -0.088987 0.073844

MSE 0.0081 0.035577 0.170003 0.007919 0.005453

n=80 estimate 0.750246 0.477842 1.26366 1.133014 0.848702

bias -0.080246 -0.157842 -0.38566 -0.033014 0.051298

MSE 0.006439 0.024914 0.148734 0.00109 0.002631

n=120 estimate 0.740696 0.47091 1.255584 1.127298 0.8590

bias -0.070696 -0.15091 -0.377584 -0.027298 0.041

MSE 0.004998 0.022774 0.14257 0.000745 0.001681

n=160 estimate 0.740508 0.462928 1.133011 1.117299 0.8692

bias -0.07059 -0.142928 -0.255011 -0.017299 0.0308

MSE 0.004971 0.020428 0.065031 0.000299 0.00095

derived its joint probability mass function of the distribution. Some properties of

the distribution are derived in this work. Method of maximum likelihood estimation

was used to find the estimates of the parameters. Real life data sets were used to

explain the suitability of the distribution. Simulation study is also carried out.
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