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ABSTRACT

In this paper, we establish exact expressions for single and product moments

of generalized order statistics from a new family of exponential distributions.

We also give a characterization result for this class of distributions.
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1 Introduction

Generalized order statistics (gos) have been introduced and extensively studied in

Kamps (1995 a,b) as a unified theoretical set-up which contains a variety of mod-

els of ordered random variables with different interpretations. Examples of such

models are: Ordinary order statistics, Sequential order statistics, Progressive type

II censored order statistics, Record values, kth record value and Pfeifer’s records.
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There is no natural interpretation of generalized order statistics in terms of observed

random samples but these models can be effectively applied in life testing and relia-

bility analysis, medical and life time data, and models related to software reliability

analysis. The common approach makes it possible to define several distributional

properties at once. The structural similarities of these models are based on the

similarity of their joint density function.

Let {Xn, n ≥ 1}be a sequence of absolutely continuous, independent and identically

distributed random variables with cdf F (x) = P (X ≤ x ) and pdf f(x). Assume k

> 0, n∈{2,3,. . . }, m̃ = (m1 , m2 , ..., mn− 1) ∈ Rn− 1, Mr =
∑n− 1

j = rmj , such that

γr = k + n− r +Mr > 0 for all r ∈ { 1, 2, ..., n− 1 }. Then X ( r, n, m̃, k ), r = 1,

2,. . . ,n , are called gos if their joint pdf is given by

fX( 1, n, m̃, k ), X( 2, n, m̃, k ), ..., X(n, n, m̃, k ) (x1, x2, ..., xn ) = k

(
n− 1
Π

j = 1
γj

)

(
n− 1
Π

i = 1
(1− F (xi))

mi f(xi)

)
(1− F (xn))k− 1 f(xn), (1.1)

where F−1 (0+) < x1 ≤ x2 ≤ ... ≤ xn < F−1(1).

By choosing appropriate values of parameters, we get the distribution of a few very

common statistics as shown in Table 1.1 given below.

The joint pdf of first r, gos is given by :

fX( 1, n, m̃, k ), X( 2, n, m̃, k ), ..., X( r, n, m̃, k ) (x1, x2, ..., xr ) = c r− 1

(
r− 1
Π

i = 1
(1− F (xi))

mi f(xi)

)

(1− F (xr))
k+n− r + Mr − 1 f(xr), (1.2)

where F−1 (0+) < x1 ≤ x2 ≤ ... ≤ xr < F−1(1).

We now consider two cases:

Case I: m1 = m2 = ... = mn−1 = m

Case II: γi 6= γj ; i 6= j, i , j = 1, 2, . . . , n - 1.

For case I, the gos will be denoted by X(r, n, m, k). The pdf of X(r, n, m, k) is

given by

fX( r, n,m, k ) (x ) =
c r− 1

(r − 1)!
(1− F (x))γr−1 f(x ) gr− 1

m (F (x)) , x ∈ R, (1.3)



Generalized order statistics 39

Table 1.1:

S.No. Choice of parameters for i =

1, 2,. . . , n

gos becomes

1 γi = n − i + 1, m1 = m2 =

... = mn− 1 = 0 and k = 1

Joint distribution of n order

statistics

2 γi = k, m1 = m2 = ... =

mn− 1 = −1 , k ∈ N
kth record value

3 γi = (n− i+ 1)αi , αi > 0 Sequential order statistics

4 γi = α− i+ 1 , α > 0 Order statistics with non

integer sample size

5 γi = βi , βi > 0 Pfeifer’s record values

6 mi ∈ No , k ∈ N Progressively type-II right

censored order statistics

and the joint pdf of X(r, n, m, k) and X(s, n, m, k), 1 ≤ r < s ≤ n, is given by

fX( r, n,m, k ), X( s, n,m , k ) (x, y ) =
c s− 1

(r − 1)! (s− r − 1)!
( (1− F (x))m f(x)) gr− 1

m (F (x))

[hm (F (y))− hm (F (x))] s− r− 1 (1− F (y))γ s−1 f(y) , x < y, (1.4)

where c r− 1 =
r
Π

j = 1
γj , γj = k + (n− j)(m+ 1) , r = 1, 2, ..., n ,

gm(x) = hm(x)− hm(0) , x ∈ ( 0, 1 ) and

hm(x) =




− (1−x)m+1

m+ 1 , m 6= − 1,

− log ( 1− x ) , m = − 1.
(1.5)

For case II, the gos will be denoted by X ( r, n, m̃, k ). The pdf of X ( r, n, m̃, k )

is given by

fX( r, n, m̃, k ) (x ) = c r− 1 f(x)
r∑

i = 1

ai(r) (1− F (x))γi−1 , x ∈ R, (1.6)
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and the joint pdf of X ( r, n, m̃, k ) and X ( s, n, m̃ , k ), 1 ≤ r < s ≤ n, is given by

fX( r, n, m̃, k ), X( s, n,m̃ , k ) (x, y ) = c s− 1

{∑s
i=r+1 a

r
i (s)

(
1−F (y)
1−F (x)

)γi}

{∑r
i=1 ai(r) (1− F (x))γi} f(x)

1−F (x)
f(y)

1−F (y) , (1.7)

where c s− 1 =
s
Π

j = 1
γj , γj = k + n− j +mj , s = 1, 2, ..., n.

Further, it can be proved that

(i) ai(r) =
r
Π

j (6=i) = 1
(γj − γi)−1 , 1 ≤ i ≤ r ≤ n

(ii) ari (s) =
s
Π

j (6=i) = r+1
(γj − γi)−1 , r + 1 ≤ i ≤ s ≤ n

(iii) ai(r) = (γr+1 − γi) ai(r + 1)

(iv) cr = cr−1γr+1

(v)
∑r+ 1

i= 1 ai(r + 1) = 0.

The moments of order statistics have generated considerable interest in the recent

years. Several recurrence relations and identities satisfied by single as well as prod-

uct moments of order statistics have been obtained by various authors in the past.

These relations help in reducing the quantum of computations involved. Joshi (1978,

1982) established recurrence relations for exponential distribution with unit mean

and were further extended by Balakrishnan and Joshi (1984) for doubly truncated

exponential distribution. For linear-exponential distribution, Balakrishnan and Ma-

lik (1986) derived the similar type of relations which were extended to doubly trun-

cated linear-exponential distribution by Mohie El-Din et al. (1997) and Saran and

Pushkarna (1999). Nain (2010 a, b) obtained recurrence relations for ordinary order

statistics and kth record values from pth order exponential and generalized Weibull

distributions, respectively.

The recurrence relations for the moments of generalized order statistics based on

non identically distributed random variables were developed by Kamps (1995 a,

b). Pawlas and Szynal (2001) obtained recurrence relations for single and product

moments of generalized order statistics from Pareto, generalized Pareto and Burr

distributions. Saran and Pandey (2004, 2009) established recurrence relations for
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single and product moments of generalized order statistics from linear-exponential

and Burr distributions. Saran and Pandey (2011) obtained recurrence relations for

marginal and joint moment generating functions of dual (lower) generalized order

statistics from inverse Weibull distribution.

In this paper, we derive exact expressions for single and product moments of gener-

alized order statistics for a new class of exponential distributions defined below in

Section 2, and discuss its various particular cases. We also give a characterization

result for this class of distributions. The results so obtained are generalized versions

of Khan et al. (2012).

2 A New Family of Exponential Distributions

Consider a family of exponential distributions defined by the function

F (x) = 1−
(

1− e−Ψ(x)
)η
, η > 0 and 0 < x <∞, (2.1)

whereΨ(0) = ∞ , Ψ(∞) = 0 and Ψ(x)is monotonic in nature with inverse function

φ(x), i.e. , Ψ−1 = ϕ.

The distribution has many applications in the area of equity risks, extreme floods,

the amounts of large insurance losses, the size of freak waves, mutational events

during evolution, large wildfires, pipeline failures due to pitting corrosion, etc. The

table 2.1 given below demonstrates a few standard distributions obtained from (2.1)

by choosing appropriate value of the parameter η and the function Ψ(x).

The mathematical form of the distribution function, as given in (2.1), is very useful

to derive the exact expressions for single and product moments of gos.

Notations

For n = 1, 2, 3,... , a> 0, b> 0, c> 0, 1 ≤ r < s ≤ n , k ≥ 1 and u, v ∈ { 0, 1, 2, ... },
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Table 2.1:

S.No. Choice of parameter η and the function Ψ(x) Family of expo-

nential distribu-

tion represents

1 η = 1, Ψ(x) =
(
β
x

)α
, φ(x) = β x−

1
α , 0 <

x <∞ and β > 0.

Frechet-type ex-

treme value dis-

tribution

2 η = 1, Ψ(x) = e−λx, φ(x) = − 1
λ log x, 0 <

x <∞ and λ > 0.

Gumbel Ex-

treme value

distribution

3 η = 1, Ψ(x) = e−(λx)
1
α , φ(x) =

1
λ (− log x)α , 0 < x <∞ and α, λ > 0.

Modified ex-

treme value

Type-I distribu-

tion

we denote by

1. Hu (a, b) =

∫ ∞

0
xu (1− F (x))a f (x) gbm (F (x)) dx (2.2)

2. Hu , v (a, b, c) =

∫ ∞

0

∫ ∞

x
xu yv (1− F (x))a f (x)

× [hm (F (y))− hm (F (x))] b (1− F (y))c f(y) dy dx (2.3)

3. µum, n, k (r) = E (X ( r, n, m, k ))u (2.4)

4. µu, vm, n, k (r, s) = E ((X ( r, n, m, k ) )u ( X ( s, n, m, k ))v) (2.5)

5. µum̃, n, k (r) = E [X ( r, n, m̃, k )]u (2.6)

6. µu, vm̃, n, k (r, s) = E [(X ( r, n, m̃, k ) )u (X ( s, n, m̃, k ))v] (2.7)

3 Some Auxiliary Results

In this section, we establish some results which will be useful later for deriving the

main results.
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Lemma 3.1 For the class of distributions defined in (2.1) and non-negative finite

integers i, j, a and b,

Hi (a, b) =





1
(m+1)b

∑b
d=0

∑∞
w=0


 b

d


 (−1)d βw(i)

w+i
η

+a+(m+1)d+1
, m 6= −1,

b !
∑∞

w=0
βw(i)(

w+i
η

+a+1
)b+1 , m = −1,

where βw (i)is the co-efficient of tw+i in
[∑∞

w=0
φw(0)
w!

(∑∞
s=1

ts

s

)w]i
and φ = Ψ−1 as

defined earlier.

Proof .

Case 1. m 6= −1.

Substituting gbm (F (x)) =
(

1−(1−F (x))m+1

m+1

)b
= 1

(m+1)b

∑b
d=0


 b

d


 (−1)d (1− F (x))(m+1)d

in (2.2), we get

Hi (a, b) =
1

(m+ 1)b

b∑

d=0


 b

d


 (−1)d

∫ ∞

0
xi (1− F (x))a+(m+1)d f (x) dx.

Putting t = (1− F (x))
1
η , we have

Hi (a, b) =
η

(m+ 1)b

b∑

d=0

∞∑

w=0


 b

d


 (−1)d βw (i)

∫ 1

0
tw+i+(a+(m+1)d+1) η−1 dt

=
η

(m+ 1)b

b∑

d=0

∞∑

w=0


 b

d


 (−1)d

βw (i)

w + i+ (a+ (m+ 1)d+ 1 ) η
,

which leads to the relation as stated in Lemma 3.1 for the case m 6= −1.

Case 2. m = −1

By using repeatedly the combinatorial identity (see, Ruiz, 1996)

b∑

d=0


 b

d


 (−1)d dk =





0, k = 0, 1, 2, ..., b− 1,

(−1)b b!, k = b,
(3.1)

we get

Hi (a, b) = lim
m → −1

∞∑

w=0

βw (i)

∑b
d=0


 b

d


 (−1)d ×

(
w+i
η + a+ (m+ 1)d+ 1

)−1

(m+ 1)b
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=
∞∑

w=0

βw (i)

(
w + i

η
+ a+ 1

)−b−1

×
b∑

d=0


 b

d


 (−1)d+b × db

(by using L-Hospital Rule),

which again on using (3.1) for k = b leads to the relation as stated in Lemma 3.1

for the case m = −1.

Lemma 3.2 For the class of distributions (2.1) and non-negative finite integers

i, j, a, b and c,

Hi , j (a, b, c) =





1
(m+1)b

∑b
v= 0

∑∞
w=0

∑∞
w′=0


 b

v


 (−1)v × βw(i)

w+w′+i+j
η

+(a+ c+b(m+1)+2)

× βw′ (j)
w′+j
η

+((b−v)(m+1)+c+1)
, m 6= −1,

b!
∑∞

w=0

∑∞
w′=0

βw(i)(
w+w′+i+j

η
+a+ c+2

)b+1 × βw′ (j)(
w′+j
η

+a+1
)b+1 , m = −1,

where βw (i)is as defined in Lemma 3.1.

Proof

Case 1: m 6= −1.

From (2.3), we have, for b = 0,

Hi , j (a, 0, c) =

∫ ∞

0

∫ ∞

x
xi yj (1− F (x))a f (x) (1− F (y))c f (y) dy dx

=

∫ ∞

0
xi (1− F (x))a f (x) G(x) dx, (3.2)

where

G(x) =

∫ ∞

x
yj (1− F (y))c f (y) dy. (3.3)

Putting t = (1− F (y))
1
η in (3.3), we have

G(x) = η

∫ (1−F (x))
1
η

0

( ∞∑

w′=0

βw′ (j) tj + w′
)
tη c+η−1dt

= η
∞∑

w′=0

βw′ (j)

∫ (1−F (x))
1
η

0
tw
′+j+η(1+ c)−1dt
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=
∞∑

w′=0

βw′ (j)


(1− F (x))

w′+j
η

+c+1

w′+j
η + c+ 1


 ,

which on substituting in (3.2) gives,

Hi , j (a, 0, c) = η2
∞∑

w=0

∞∑

w′=0

βw (i)βw′ (j)
1

w′ + j + (c+ 1)η

∫ 1

0
tw+w′+i+j+η(a+ c+2)−1 dt

= η2
∞∑

w=0

∞∑

w′=0

βw (i)

w + w′ + i+ j + (a+ c+ 2) η
× βw′ (j)

w′ + j + (c+ 1) η
. (3.4)

Further, on substituting the value of

[hm (F (y))− hm (F (x))]b =

[
(1− F (x))m+1 − (1− F (y))m+1

(m+ 1)

]b

=
1

(m+ 1)b

b∑

v= 0


 b

v


 (−1)v (1− F (x))v(m+1) (1− F (y))(b−v)(m+1)

in (2.3), we get

Hi , j (a, b, c) =
1

(m+ 1)b

b∑

v= 0


 b

v


 (−1)v

×
[ ∫ ∞

0

∫ ∞

x
xi yj (1− F (x))a+v(m+1) f (x) (1− F (y))(b−v)(m+1)+c f (y) dy dx

]

=
1

(m+ 1)b

b∑

v= 0


 b

v


 (−1)vHi , j (a+ v(m+ 1), 0 , (b− v)(m+ 1) + c) ,

(by using (3.2))

which on using (3.4) leads to the relation as stated in Lemma 3.2 for the case

m 6= −1.

Case 2. m = −1.

The proof is similar to the one used in case 2 of Lemma 3.1.
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4 Explicit Expressions For Single and Product Moments

Theorem 4.1 For m1 = m2 = ... = mn−1 = m, n = 1, 2, 3,... , 1 ≤ r ≤ n , k ≥ 1

and u ∈ { 0, 1, 2, ... },

µum, n, k (r) =
c r− 1

(r − 1)!
Hu (γr − 1, r − 1) , (4.1)

where Hu (γr − 1, r − 1) is as defined in Lemma 3.1.

Proof. On using (2.4) and (1.3), the uth order moment of X(r, n,m, k) is given by

µum, n, k (r) =
c r− 1

(r − 1)!

∫ ∞

0
xu (1− F (x))γr− 1 f(x ) gr− 1

m (F (x)) dx.

By using (2.2), we shall derive the relation as stated in (4.1).

Corollary 4.1 For γi 6= γj ; i 6= j, i, j = 1, 2, ..., n − 1, n = 1, 2, 3, ..., 1 ≤ r ≤
n , k ≥ 1 and

u ∈ { 0, 1, 2, ... } ,

µum̃, n, k (r) = c r− 1

r∑

i = 1

ai(r)Hu (γi − 1, 0) , (4.2)

where Hu (γi − 1, 0) is as defined in Lemma 3.1.

Proof. The proof is similar to the proof of theorem 4.1 on using (2.6) and (1.6).

Theorem 4.2 For m1 = m2 = ... = mn−1 = m, n = 1, 2, 3,... , 1 ≤ r < s ≤ n , k ≥
1 and u, v ∈ { 0, 1, 2, ... },

µu, vm, n, k (r, s) =
c s − 1

(r − 1)! (s− r − 1)! (m+ 1)r−1

r−1∑

d=0


 r − 1

d


 (−1)d

×Hu , v (m+ (m+ 1)d, s− r − 1, γs − 1) , (4.3)

where Hu , v (m+ (m+ 1)d, s− r − 1, γs − 1) is as defined in Lemma 3.2.

Proof. On using (2.5) and (1.4), we have

µu, vm, n, k (r, s) =
c s − 1

(r − 1)! (s− r − 1)!

∫ ∞

0

∫ ∞

x
xu yv ( (1− F (x))m f(x)) gr− 1

m (F (x))
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× [hm (F (y))− hm (F (x))] s− r− 1 (1− F (y))γ s− 1 f(y) dy dx. (4.4)

Substituting

gr−1
m (F (x)) =

(
1− (1− F (x))m+1

m+ 1

)r−1

=
1

(m+ 1)r−1

r−1∑

d=0


 r − 1

d


 (−1)d (1− F (x))(m+1)d

in (4.4), we have

µu, vm, n, k (r, s) =
c s − 1

(r − 1)! (s− r − 1)! (m+ 1)r−1

r−1∑

d=0


 r − 1

d


 (−1)d

∫ ∞

0

∫ ∞

x
xu yv

(
(1− F (x))m+(m+1)d f(x)

)

× [hm (F (y))− hm (F (x))] s− r− 1 (1− F (y))γ s− 1 f(y) dy dx.

The relation (4.3) follows immediately on using (2.3).

Corollary 4.2 For γi 6= γj ; i 6= j, i, j = 1, 2, ..., n− 1, n = 1, 2, 3,... , 1 ≤ r < s ≤
n ,, k ≥ 1 and u, v ∈ { 0, 1, 2, ... },

µu, vm̃,n,k (r, s) = cs−1

r∑

i = 1

ai(r)

s∑

j = r+1

arj(s) Hi , j (γi − γj − 1, 0, γj − 1) , (4.5)

where Hi , j (γi − γj − 1, 0, γj − 1)is as defined in Lemma 3.2.

Proof. The proof is similar to the proof of theorem 4.2 on employing (2.7) and

(1.7).

5 Characterization

Let X(r, n,m, k), r = 1, 2, . . . , n be the gos from a continuous type of distri-

bution with cumulative distribution function F (x) and probability density func-

tion f(x). Then, in view of (1.3) and (1.4), the conditional density function of

Y = X(s, n,m, k) given X(r, n,m, k) = x, 1 ≤ r < s ≤ n, is
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f(y|x) = σ

[
1−

(
1− F (y)

1− F (x)

)m+1
]s−r−1(

1− F (y)

1− F (x)

)γs−1 f(y)

1− F (x)
, 0 < x < y <∞,

(5.1)

where σ = cs−1

(s−r−1)! cr−1 (m+1)s−r−1 .

Theorem 5.1 Let X be a non-negative, absolutely continuous type of random

variable with distribution function F(x) satisfying the conditions F (0) = 0 and

0 < F (x) < 1. Then a necessary and sufficient condition for

E
(

(X ( s, n,m , k ))i |X ( r, n,m , k ) = x
)

=
∞∑

w=0

βw (i)
(

1− e−ψ(x)
)w+i

×
s−r∏

j=1

(
γr+j

w+i
η + γr+j

)
(5.2)

is that

F (x) = 1−
(

1− e−ψ(x)
)η
, x > 0 , η > 0,

where ψ(x) is monotonic function satisfying ψoϕ(x) = x for some function ϕ(x).

Proof. On using (5.1), we have

E
(
Y i|X ( r, n,m , k ) = x

)

= σ

∫ ∞

x
yi

(
1−

(
1− F (y)

1− F (x)

)m+1
)s−r−1(

1− F (y)

1− F (x)

)γs−1 f(y)

1− F (x)
dy

Put u = 1−F (y)
1−F (x) in the above equation we get

E
(
Y i|X ( r, n,m , k ) = x

)

= σ
∞∑

w=0

βw (i)
(

1− e−ψ(x)
)w+i

∫ 1

0
u
w+i
η

+γs−1 (
1− um+1

)s−r−1
du,

= σ
∞∑

w=0

βw (i)
(

1− e−ψ(x)
)w+i

B

(
w + i

η(m+ 1)
+

γs
m+ 1

, s− r
)(

By putting um+1 = v
)

=
cs−1

cr−1

∞∑

w=0

βw (i)
(

1− e−ψ(x)
)w+i

s−r∏

j=1

(
w + i

η
+ γr+j

)−1

,
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which, on substituting the value of cs−1

cr−1
, leads to (5.2). This proves the sufficient

condition.

Let

Zr(x) =
∞∑

w=0

βw (i)
(

1− e−ψ(x)
)w+i

s−r∏

j= 1

(
γr+j

w+i
η + γr+j

)
. (5.3)

Then it implies that

Zr+1(x)− Zr(x) =
1

η γr+1

∞∑

w= 0

βw (i) (w + i)
(

1− e−ψ(x)
)w+i

s−r∏

j= 1

(
γr+j

w+i
η + γr+j

)
.

(5.4)

Differentiating both sides of (5.3) with respect to x, we have

Z
′
r(x) =

e−ψ(x)ψ′(x)

1− e−ψ(x)

∞∑

w=0

βw (i) (w + i)
(

1− e−ψ(x)
)w+i

s−r∏

j=1

(
γr+j

w+i
η + γr+j

)
. (5.5)

Using (5.4) and (5.5), we get

Z
′
r(x) = γr+1 (Zr+1(x)− Zr(x))

η e−ψ(x)ψ′(x)

1− e−ψ(x)
. (5.6)

Also from (5.2), we have

cs−1

cr−1

∫ ∞

x
yi
(

(1− F (x))m+1 − (1− F (y))m+1
)s−r−1

(1− F (y))γs−1 f(y) dy

= (s− r − 1)! (m+ 1)s−r−1 (1− F (x))γr+1 Zr(x). (5.7)

Differentiating both sides with respect to x, we get

cs−1

cr−1

[∫ ∞

x
yi
(

(1− F (x))m+1 − (1− F (y))m+1
)s−r−2

(1− F (y))γs−1 f(y) dy

]

=
(s− r − 2)! (m+ 1)s−r−2 (1− F (x))γr+1−1

f(x) (1− F (x))m

(
γr+1 f(x)Zr(x) + (1− F (x))Z/r (x)

)
.

(5.8)

Using (5.7) in the L.H.S. of (5.8) by making appropriate changes we get

cs−1

cr−1

(
cr
cs−1

(s− r − 2)! (m+ 1)s−r−2 (1− F (x))γr+2 Zr+1(x)
)

= (s− r − 2)! (m+ 1)s−r−2 (1− F (x))γr+2

(
γr+1 Zr(x) +

1− F (x)

f(x)
Z/r (x)

)
,
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which on simplification yields

γr+1 (Zr+1(x)− Zr(x)) =
1− F (x)

f(x)
Z
′
r(x). (5.9)

Then, using (5.6) in (5.9) we get

f(x)

1− F (x)
=
η e−ψ(x)ψ′(x)

1− e−ψ(x)

This implies

F (x) = 1−
(

1− e−ψ(x)
)η
, x > 0 , η > 0.

This proves the necessary part and hence the result.
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