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ABSTRACT

Laplace process was introduced in Satheesh (1990) as a possible alternative

to Wiener process. Here we discuss some properties of this process viz. correla-

tion, martingales, finite dimensional distributions and sample paths. A review

of the rich theoretical developments over Laplace process, driven by data, over

the years is also given.
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1 Introduction

There are situations when a Laplace model is preferred to a Gausian one. While

Hsu (1979) used it to model the pooled position errors in a large navigation system,

Sethia and Anderson (1984) used a stationary autoregressive model with Laplace

marginals in communication engineering. Such possibilities motivated the introduc-

tion of Laplace process in Satheesh (1990). There some martingales of interest were

discussed and it was shown that a Laplace process is subordinated to a standard

Wiener process by a directing gamma process.
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Definition 1.1. A random process {X(t), t ≥ 0} with stationary and independent

increments is a Laplace process if X(0) = 0 and the characteristic function (CF) of

X(1) is ϕ(s, 1) = 1/(1 + s2).

Looking back, one finds that rich theoretical advances driven by empirical evi-

dence have taken place over the last 30 years. Hence, before recording our results

here, we sketch these developments.

Modelling stock prices with stochastic processes began with Bachelier (1900)

when he modelled logarithm of prices as a Brownian motion (BM) with drift. One

of the limitations of this model was that it failed to account for negative prices.

Samuelson (1965) suggested the use of geometric BM (GBM) which was used by

Black and Scholes (1973) and Merton (1973) to demonstrate the fluctuations in

European markets. Though Black-Scholes (BS) model won the 1997 Nobel prize

for Economics, it was rejected on empirical grounds, unable to capture important

features of data in the market, see Barndorff-Nielsen and Shephard (2001).

Madan and Seneta (1990) proposed the variance gamma (VG) processes (same

as the Laplace process studied in this paper) to model long taildness and closure

of increments under summation inherent in data. The idea here is that a larger

class of Lévy processes can be derived from the BM {B(t)} by randomizing its time

parameter t using a positive continuous random variable T . The advantage is, while

certain features of {B(t)} are retained, those of T can be augmented to alter some

others to get new useful processes. See, e.g. Schoutens (2003) for more on Lévy

processes in the context.

One of the first specific Lévy models used in the context of stock-price modelling

is the VG model by Madan and Seneta (1990). As the name suggests, variance of

a normal law is randomised using a gamma law, or in terms of processes, the time

parameter of BM is randomized using a gamma process; the result is Laplace process,

studied in Satheesh (1990). It is also called normal-gamma process by Bibby and

Sorensen (2003). A three parameter extension of VG model, that can be tuned for

the observed volatility, skewness and kurtosis has been introduced by Madan et al.

(1998). Kotz et al. (2001) names it as Laplace motion. Typically, Laplace motion
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accounts for distributions of increments that are more peaked at the mode with

thick tails. Though Lévy models, in general, were a significant improvement over

the BS model, they still fell short in accounting for stochastic volatility (SV).

Barndorff-Nielsen and Shephard (2001) brought in Ornstein-Uhlenbeck (OU)

processes to model SV. They observed that every assumption underlying BS model

was empirically rejected. OU models offer plenty of analytic tractability, the possi-

bility of capturing important distributional deviations from Gaussianity and flexible

modelling of dependence structures. They constructed continuous time SV processes

as superposition of positive OU processes.

While Lévy processes, based on infinitely divisible laws, have been successfully

used to capture skewness and kurtosis observed in financial data, self-decomposable

laws lead to stationary OU processes that capture SV. The need to model heavier or

thicker tails, a feature of data on market prices, has lead to the use of non-Gaussian

stable processes, see Samarodnitsky and Taqqu (1994) and Jondeau et al. (2007).

Non-Gaussian stable models form a subclass of OU, which is a subclass of Lévy.

Many datasets on logarithm of price changes exhibit long-range dependence

(LRD) or long memory, conceived by Mandelbrot and Wallis (1968). Since the

feature of LRD can be modelled by the property of self-similarity, which a fractional

BM (FBM) possesses, such datasets can be modelled using FBM, Mandelbrot and

Ness (1968). Data on logarithms of hydraulic conductivity exhibited peakedness at

the mode and thick tails in addition to LRD and fractional Laplace motion (FLM)

was introduced by Kozubowski et al. (2006) as FBM failed to model these ap-

propriately. This is subordination of FBM to gamma process, see also Gajda et al.

(2017). Kumar et al. (2017) extended this by subordinating FBM to inverse gamma

process. To account for thicker tails in the context, fractional Lévy stable motions

(FLSM) with infinite variance were considered in Pipiras and Taqqu (2017) which

were extended by subordination to a gamma process in Gajda et al. (2018).

Rosenblatt process is one of the ”Hermite processes” which are limits of normal-

ized sums of LRD random variables, Taqqu (2011). The simplest Hermite process is

the FBM and the Rosenblatt process is the simplest non-Gaussian Hermite process.
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It has the same covariance as the FBM, is self-similar and hence can be used to

model LRD. Subordinating it to a gamma process we get the Rosenblatt Laplace

motion as a potential alternative to FLSM, see Lupascu-Stamate and Tudor (2019).

A standout feature of the developments reviewed above is that it has been data

driven. At various stages since Bachelier (1900), the models were found inadequate

to capture certain features in the data and got updated to account for that. Though

mainly used to model data from finance and hydraulic conductivity, these models

are also applied to areas viz. condensed matter physics, economics, geophysics,

hydrology and telecommunications, see Kotz et al. (2001). While Gaussian process

is completely specified by its mean and auto-correlation function, non-Gaussian

models discussed above command a much richer parametrization and thus offer

additional merit of flexibility and variety.

Similar parallel developments are there for the non-Gaussian auto-regressive

models. For an update on these see, Bouzar and Satheesh (2008), Bakouch et al.

(2013), Balakrishna (2021) and also the books already referred to.

Now, let us record our results. Since for Laplace process {X(t), t ≥ 0}, E(X(t)) =

0 and V (X(t)) = E(X2(t)) = 2t, Satheesh (1990), we write X(t) ∼ L(0, 2t). In the

next section we discuss its correlation structure, certain other martingales of inter-

est, finite dimensional distributions (FDD) and nature of sample paths and compare

them with those of Wiener process/ BM.

2 Properties

Let {X(t), t ≥ 0} be Laplace process. Then for s < t,

Cov[X(t), X(s)] = E[X(t)X(s)]− E[X(t)]E[X(s)]

= E[X(t)X(s)] = E[(X(t)−X(s) +X(s))X(s)]

= E[(X(t)−X(s))X(s) +X2(s)]

= E[X(t)−X(s)]E(X(s)) + E(X2(s))

= 0 + 2s = 2s,
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since the increments are independent, X(t) − X(s) is independent of X(s) for

s < t. For s > t we obtain Cov[X(t), X(s)] = 2t, in a similar way. Hence,

Cov[X(t), X(s)] = 2min{s, t} = 2(s ∧ t). Now the correlation coefficient between

X(s) and X(t) is

ρs,t =
2(s ∧ t)√
2t
√
2s

=

√
s

t
, if s < t and

√
t

s
, if s > t. Hence ρs,t =

√
s ∧ t

s ∨ t
.

Note that ρs,t is identical to that of Wiener process. Certain martingales of

interest are discussed below.

Proposition 2.1. For the Laplace process {X(t), t ≥ 0} on the probability space

(Ω,F , P ), X(t) and X2(t)− 2t are martingales.

Proof. Note that X(t) is Ft adapted and X(t)−X(s) is independent of Fs, s < t.

Since E(X(t)|Fs) = E(X(t)−X(s)+X(s)|Fs) = E(X(t)−X(s)|Fs)+E(X(s)|Fs) =

X(s), X(t) is a martingale. Again,

E{X2(t)− 2t|Fs} = E{(X(t)−X(s) +X(s))2 − 2t|Fs}

= E{[X(t)−X(s)]2 + 2[X(t)−X(s)]X(s) +X2(s)− 2t|Fs}

= 2(t− s) + 0 +X2(s)− 2t

= X2(s)− 2s.

Since |X2(t)− 2t| ≤ X2(t)+ 2t, E(|X2(t)− 2t|) ≤ E(X2(t)+ 2t) = E(X2(t))+ 2t =

4t < ∞. Hence, X2(t)− 2t is a martingale.

Note that for Wiener process, {W (t), t ≥ 0}, W 2(t) − t is a martingale, which

is a sub-martingale for the Laplace process.

To derive the FDD of Laplace process we proceed as follows. The CF of the

increment X(t+ p)−X(t), p > 0 is ϕ(s, p) = (1+ s2)−p = (1+ is)−p(1− is)−p. This

shows that ϕ(s, p) is the CF of the difference of two i.i.d gamma(p) variables. Let

X and Y are i.i.d gamma(p) variables. The joint density of (X,Y ) is

f(x, y) =
1

(Γ(p))2
xp−1yp−1e−(x+y); x, y > 0, p > 0.
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The Jacobian of the transformation U = X and V = X − Y is unity and hence the

joint density of (U, V ) is

g(u, v) =
1

(Γ(p))2
up−1(u− v)p−1e−(2u−v), u > max{0, v}, v ∈ R.

Since the distribution of V is symmetric about zero, the density of V for v > 0 is

g1(v) =
1

(Γ(p))2

∫ ∞

v
up−1(u− v)p−1e−(2u−v) du, v > 0.

Setting W = U
V we get,

g1(v) =
evv2p−1

Γ(p)

1

Γ(p)

∫ ∞

1
wp−1(w − 1)p−1e−2vw dw

=
e−vv2p−1

Γ(p)

e2v

Γ(p)

∫ ∞

1
wp−1(w − 1)p−1e−2vw dw

=
e−vv2p−1

Γ(p)
U(p, 2p, 2v), v > 0,

using formula 13.2.6, on p.505 in Abramovitz and Stegun (1965) for the confluent

hypergeometric function U(a, b, z). Hence, the density of V for v ∈ R is

g1(v) =
e−|v||v|2p−1

Γ(p)
U(p, 2p, 2|v|), v ∈ R. (2.1)

For 0 = t0 < t1 < ... < tn, consider n (≥ 2) increments Xj = X(tj) −X(tj−1), j =

1, ..., n of the Laplace process which are independent symmetrized gamma(pj) vari-

ates, where pj = tj − tj−1. The joint density of X1, ..., Xn is then

h(x1, ..., xn) =

n∏
j=1

g1(xj)

where g1(.) is given by (2.1). To get the joint density of Yj = X(tj), j = 1, ..., n

make the partial sum transformation Yk = X1 + ...+Xk, k = 1, ..., n. The Jacobian

of this transformation is unity and hence the joint density of (Y1, ..., Yn), yj ∈ R is,

ℓ(y1, ..., yn) =

n∏
k=1

e|yk−yk−1| |yk − yk−1|2pk−1

Γ(pk)
U(pk, 2pk, 2|yk − yk−1|)

which is the FDD of Laplace process.
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Remark 2.1. In connection with the generalized Laplace distribution, the density

(2.1) is well-known and it is stated in terms of the modified Bessel function of the

3rd kind (see. Kotz et al. 2001, for further details).

We know that the paths of Weiner process are continuous and nowhere differen-

tiable with probability 1. For Laplace process we have the following results.

Theorem 2.2. The paths of Laplace process {X(t), t ≥ 0} on the probability space

(Ω,F , P ) are continuous in probability and nowhere differentiable.

Proof. The path of X(t) is continuous in probability iff for every δ > 0 and t ≥ 0,

lim
∆t→0

P{|X(t+∆t)−X(t)| ≥ δ} = 0.

Since X(t+∆t)−X(t) has the same distribution as X(∆t), by Markov’s inequality,

P{|X(t+∆t)−X(t)| ≥ δ} = P{|X(∆t)| ≥ δ}

≤ E(|X(∆t)|2)
δ2

=
V (X(∆t))

δ2

=
2∆t

δ2
.

Now, letting ∆t → 0, we have P{|X(t + ∆t) − X(t)| ≥ δ} → 0, proving the first

assertion.

Setting ∆X(t) = X(t+∆t)−X(t), ∆X(t) = L
√
2∆t, where L ∼ L(0, 1) and

lim
∆t→0

∆X(t)

∆t
= lim

∆t→0

L
√
2∆t

∆t
= lim

∆t→0

L
√
2√

∆t
= ±∞,

depending on the sign of L. Hence, the path of X(t) is nowhere differentiable.
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