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ABSTRACT

In Statistics, nonparametric tests play a very important role when the data

sets are not normal. In this paper, we develop a class of nonparametric tests to

compare location parameters of two populations. The proposed test statistic

is based jointly on minimum and median of the sub-samples. The mean and

variance of the test statistic are derived. The test statistic has asymptotic

normality under some assumptions. The proposed class of the tests is compared

with its existing competitor’s w.r.t. Pitman and Bahadur asymptotic relative

efficiency. As an illustration, the proposed test is applied to a real life data set.

We carried out the Monte Carlo simulation study to find the power and level

of significance of the proposed test.
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1 Introduction

In many experimental settings, it is of interest to test the equality of two populations,

for the response variable or the characteristic under study when these populations

differ only in their location parameters. For example, in the field of agriculture, to

test which fertilizer is more effective in the production of a crop, the usual two sample

t-test is used, if the data does not violate the normality condition; otherwise the

corresponding non-parametric test for the two sample location problem is applied.

More examples can be considered in other fields such as in industrial experiments,

pharmaceutical studies etc.

In this paper, we develop a class of non-parametric tests for the two sample loca-

tion problem. In the literature there are many two sample location tests, namely

Wilcoxon-Mann-Whitney test (Wilcoxon, 1945; Mann and Whitney, 1947), Kochar

(1978), Deshpande and Kochar (1980, 1982), Stephenson and Ghosh (1985), Ahmad

(1996), Kumar (1997, 2015), Xie and Priebe (2000), Öztürk (2001, 2002), Kumar et

al. (2003), Kössler and Kumar (2008), Kössler (2010), Shetty and Umarani (2010),

Kumar and Chattopadhyay (2013), Kumar and Chawla (2016), Kumar and Goyal

(2018), and Kumar and Kumar (2020).

The proposed class of test statistic is based jointly on minimum and median of the

sub-samples. This class of the test is given in the Section 2 and its distribution is

discussed in Section 3. In Section 4, the proposed class of tests is compared with

existing tests in terms of Pitman and Bahadur asymptotic relative efficiency. In

Section 5, an illustrative example based on real life data set is given to see the

working of the proposed test. Simulation study to compute the estimated power

and estimated level of significance of the proposed test is given in Section 6.

2 Proposed Class of Tests

Let X1, X2, . . ., Xn1 and Y1, Y2, . . ., Yn2 be the independent random samples of size

n1 and n2 from two populations with absolutely continuous cumulative distribution

functions F (x) and F (x −∆), respectively, and ∆ is called the shift parameter. If
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∆ > 0 then it means the Y ′s are stochastically greater than the X ′s and if ∆ < 0

then it means Y ′s are stochastically smaller than the X ′s. Now our motive is to

test the null hypothesis:

H0 : ∆ = 0

against the alternative hypothesis

H1 : ∆ ̸= 0.

We consider the following class of U -Statistics for testing H0 against H1:

T2c+1,2d+1 =

[(
n1

2c+ 1

)(
n2

2d+ 1

)]−1∑
Φ(Xw1 , Xw2 , . . . , Xw2c+1 ;Yz1 , Yz2 , . . . , Yz2d+1

),

where Φ(X1, X2, . . . , X2c+1;Y1, Y2, . . . , Y2d+1) is the kernel defined as:

Φ(X1, X2, . . . , X2c+1;Y1, Y2, . . . , Y2d+1) =

=

1, if X1:2c+1 ≤ Y1:2d+1 andXc+1:2c+1 ≤ Yd+1:2d+1

0, otherwise.

Here c and d are the fixed whole numbers such that 0 ≤ c ≤ n1 and 0 ≤ d ≤ n1. Fur-

therX1:2c+1 = min(X1, X2, . . . , X2c+1), Y1:2d+1 = min(Y1, Y2, . . . , Y2d+1), Xc+1:2c+1 =

median(X1, X2, . . . , X2c+1) andYd+1:2d+1 = median(Y1, Y2, . . . , Y2d+1). The sum-

mation in the test statistic T2c+1,2d+1 is extended over all possible combinations

(w1, w2, . . . , w2c+1) of (2c+1) integers chosen from (1, . . . , n1) and all possible com-

binations (z1, z2, . . . , z2d+1) of (2d+ 1) integers chosen from (1, . . . , n2).

The statistic T2c+1,2d+1 is the U -statistic corresponding to the kernel

Φ(X1, X2, . . . , X2c+1;Y1, Y2, . . . , Y2d+1).

The test is to reject the null hypothesis H0 for large values of the test statistic

T2c+1,2d+1.

Note that when c = d = 0, the test statistics T2c+1,2d+1 corresponds Wilcoxon-

Mann-Whitney test statistic.
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3 The Distribution of Test Statistic T2c+1,2d+1

The expectation of the test statistic T2c+1,2d+1 is

E(T2c+1,2d+1) =

=

[(
n1

2c+ 1

)(
n2

2d+ 1

)]−1∑
E[Φ(Xw1 , Xw2 , . . . , Xw2c+1 ;Yz1 , Yz2 , . . . , Yz2d+1

)]

= P [X1:2c+1 ≤ Y1:2d+1 and Xc+1:2c+1 ≤ Yd+1:2d+1]

=
∫∞
−∞

∫ v
−∞ P [X1:2c+1 ≤ t andXc+1:2c+1 ≤ v]dP [Y1:2d+1 ≤ t andYd+1:2d+1 ≤ v].

Under the null hypothesis H0, the expression of expectation, say, E0(T2c+1,2d+1),

is:

=

∫ ∞

−∞

∫ v

−∞

2c+1∑
s=c+1

s∑
r=1

(2c+ 1)!(2d+ 1)!

(r!)(s− r)!(2c+ 1− s)!(d− 1)!d!
(F (t))r(F (v)−F (t))s+d−r−1

×(1− F (t))2c+d−s−1dF (t)dF (v)

E0(T2c+1,2d+1) =


1
2 , for c = d = 0[(

2c+2d+2
2d+1

)]−1∑2c+1
s=c+1

∑s
r=1

(
s−r+d−1

d−1

)(
2c+1−s+d

d

)
, for c, d ≥ 1.

The following theorem provides asymptotic distribution of test statistic T2c+1,2d+1.

Theorem 1: Let N = n1 + n2. The asymptotic distribution of N
1
2 [T2c+1,2d+1 −

E(T2c+1,2d+1)], as N → ∞ in such a way that n1
N → λ and 0 ≤ λ ≤ 1 is Normal

with mean zero and variance σ2(T2c+1,2d+1), as

σ2(T2c+1,2d+1) = (2c+ 1)2
ξ10
λ

+ (2d+ 1)2
ξ01

1− λ
,

where

ξ10 = E[(Φ(x0, X2, . . . , X2c+1;Y1, Y2, . . . , Y2d+1))
2]− [E(T2c+1,2d+1)]

2,

and

ξ01 = E[(Φ(X1, X2, . . . , X2c+1; y0, Y2, . . . , Y2d+1))
2]− [E(T2c+1,2d+1)]

2,
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with

Φ(x0, X2, . . . , X2c+1;Y1, Y2, . . . , Y2d+1) =

= E[Φ(X1, X2, . . . , X2c+1;Y1, Y2, . . . , Y2d+1)|X1 = x0],

and

Φ(X1, X2, . . . , X2c+1; y0, Y2, . . . , Y2d+1) =

= E[Φ(X1, X2, . . . , X2c+1; y0, Y2, . . . , Y2d+1)|Y1 = y0].

Proof: Follows from the results of Randles and Wolfe (1979), Chapter 3, p. 92.

Under H0, asymptotic null variance of the test statistic, σ2
0(T2c+1,2d+1), after

some computation is:

σ2
0(T2c+1,2d+1) =

(2c+ 1)2(Ψ2c+1,2d+1)

λ(1− λ)
,

where

Ψ2c+1,2d+1 =

∫ ∞

−∞
I2dx− (E0(T2c+1,2d+1))

2,

with

I =

∫ ∞

−∞

∫ v

−∞
(P [min(x,X2, . . . , X2c+1) ≤ t andmedian(x,X2, . . . , X2c+1) ≤ v])

×(dP [min(Y1, Y2, . . . , Y2d+1) ≤ t andmedian(Y1, Y2, . . . , Y2d+1) ≤ v]).

After some computations, we get

Ψ2c+1,2d+1 =


1
12 , for c = d = 0

A+B + C +D + E + F − (E0(T2c+1,2d+1))
2, for c, d ≥ 1,

where

A =

((
2c+ 2d+ 1

2d+ 1

)−1 2c∑
s=c+1

s∑
r=1

(
s− r + d− 1

d− 1

)(
2c− s+ d

d

))2

,
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B =

(
(2d+ 1)!

d!(d− 1)!

)2 2c∑
s=c

2c+d−s∑
l=0

s+d−1∑
m=0

2c∑
p=c

2c+d−p∑
q=0

p+d−1∑
w=0

(−1)m+l+q+w

(m+ 1)(w + 1)

(
2c

p

)(
2c

s

)

×
(
s+ d− 1

w

)(
p+ d− 1

w

)(
2c+ d− s− 1

l

)(
2c+ d− p− 1

q

)

×

([
1− 1

s+d+l+2 − 1
p+d+q+2 + 1

p+s+2d+l+q+3

(s+ d+ l + 1)(p+ d+ q + 1)

]

−

[
1

w+2 − 1
p+d+q+2 − 1

s+d+l+w+3 + 1
p+s+2d+l+q+3

(s+ d+ l + 1)(p+ d− w + q)

]

−

[
1

m+2 − 1
s+d+l+2 − 1

p+d+q+m+3 + 1
p+s+2d+l+q+3

(p+ d+ q + 1)(s+ d−m+ l)

]

+

[
1

m+w+3 − 1
p+d+q+m+3 − 1

s+d+l+w+3 + 1
p+s+2d+l+q+3

(s+ d−m+ l)(p+ d− w + q)

])
,

C =

(
(2d+ 1)!(2c)!

(c+ d)!d!c!

)( c∑
r=1

(
c− r + d− 1

d− 1

))2 c+d∑
m=0

c+d∑
n=0

(−1)m+n

(
c+ d

m

)(
c+ d

n

)

×

[
1− 1

c+d+m+2 − 1
c+d+n+2 + 1

2c+2d+m+n+3

(c+ d+m+ 1)(c+ d+ n+ 1)

]
,

D = 2

(
2c+ 2d+ 1

2d+ 1

)−1 2c∑
s=c+1

s∑
r=1

(
s− r + d− 1

d− 1

)(
2c− s+ d

d

)
(2d+ 1)!(2c)!

(c+ d)!d!c!

×
c∑

r=1

(
c− r + d− 1

d− 1

) c+d∑
m=0

(−1)m
(
c+ d

m

)
1

c+ d+m+ 2
,

E = 2

(
(2d+ 1)!2(2c)!

(c+ d)!(d)!2c!(d− 1)!

) c∑
r=1

(
c− r + d− 1

d− 1

) c+d∑
n=0

2c∑
s=c

2c+d−s∑
l=0

s+d−1∑
m=0

(−1)n+l+m

m+ 1

×
(
c+ d

n

)(
2c

s

)(
s+ d− 1

m

)(
2c+ d− s

l

)



A Class of Tests Based Jointly on Sub-Sample Minimum and Median 7

×

([
1− 1

s+d+l+2 − 1
c+d+n+2 + 1

c+s+2d+l+n+3

(s+ d+ l + 1)(c+ d+ n+ 1)

]

−

[
1

m+2 − 1
s+d+l+2 − 1

c+d+n+m+3 + 1
c+s+2d+l+n+3

(s+ d+ l −m)(c+ d+ n+ 1)

])
,

and

F =
2

d!

(
2c+ 2d+ 1

2d+ 1

)−1 2c∑
s=c+1

s∑
r=1

(
s− r + d− 1

d− 1

)(
2c− s+ d

d

) 2c∑
s=0

2c+d−s∑
l=0

s+d−1∑
m=0

(2d+ 1)!

(d− 1)!

(−1)m+l

m+ 1

(
2c

s

)(
s+ d− 1

m

)(
2c+ d− s

l

)[
1

s+ d+ l + 2
−

1
m+2 − 1

s+d+l+2

s+ d−m+ l

]
.

In the Table 1, the values of null mean E0(T2c+1,2d+1) and null variance σ2
0(T2c+1,2d+1)

are provided for some choices of c and d.

Table 1:Expectation and Variance of T2c+1,2d+1 under null hypothesis

(c,d) (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

Eo(T2c+1,2d+1) 0.3500 0.3928 0.4166 0.2678 0.3214 0.3547 0.2166 0.2714 0.3082

σ2
o(T2c+1,2d+1) 0.1812 0.2383 0.2752 0.1781 0.2630 0.3251 0.1630 0.2609 0.3403

4 Asymptotic Relative Efficiency

In this section, we compute two types of well-known asymptotic relative efficiency

namely Pitman asymptotic relative efficiency (Pitman ARE) and Bahadur asymp-

totic relative efficiency (Bahadur ARE) of the test statistic T2c+1,2d+1. We firstly

compute the Pitman ARE of the test statistic.

4.1 Pitman Asymptotic Relative Efficiency

From the definition of Pitman ARE, the limiting efficacy of the test statistic

T2c+1,2d+1, under the sequence of local alternatives, ∆N = ∆

N
1
2
, is given as:

e2(T2c+1,2d+1) = lim
N→∞

d
d∆N

[E(T2c+1,2d+1)|∆N = 0]2

Nσ2
0(T2c+1,2d+1)

.



8 Journal of the Kerala Statistical Association

For c = d = 0,

d

d∆N
[E(T2c+1,2d+1)|∆N = 0] =

∫ ∞

−∞
(f(x))2dx,

and for c, d ≥ 1,

d
d∆N

[E(T2c+1,2d+1)|∆N = 0] =

=

∫ ∞

−∞

∫ y

−∞
N

1
2

(
(2c+ 1)!

c!(c− 1)!

)(
(2d+ 1)!

d!(d− 1)!

)
(F (y)− F (x))d−1(1− F (y))df(y)f(x)

×
c−1∑
m=0

c∑
n=0

(
(−1)m+n

(
c−1
m

)(
c
n

)
c+ n−m

− (F (x))c+nf(x)

+
(c+ n−m)(F (y))c+n−m−1(F (x))m+1f(y)

m+ 1

)
dxdy.

We now compare the performance of proposed test with respect to some of its

competitors such as Wilcoxon-Mann-Whitney test (Wilcoxon (1945) and Mann and

Whitney (1947)) test(WMW), Kumar (1997) test(Km), Öztürk (2001) test (OZr,s)

and Kumar (2015) test (Kr1,r2;i,j), in terms of the Pitman asymptotic relative effi-

ciency for various underlying distributions. The values of Pitman asymptotic relative

efficiency with respect to Wilcoxon-Mann-Whitney test are given in Table 2. The

values of Pitman asymptotic relative efficiency with respect to other tests can be

found using efficacy from their respective paper.

Table 2: Pitman asymptotic relative efficiencies of T2c+1,2d+1 relative to

Wilcoxon-Mann-Whitney (WMW) test

Distribution (c,d)

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

Uniform 1.0344 1.0274 1.0178 1.3746 1.4016 1.4137 1.7177 1.7613 1.7854

U-quadratic 1.1248 1.0486 1.9837 1.9331 1.8549 1.7876 2.8084 2.7056 2.6250

Normal 0.9296 0.9433 0.9425 0.8677 0.9083 0.9238 0.8046 0.8614 0.8882

Cauchy 0.8889 0.9802 1.0517 0.6449 0.7668 0.8578 0.4779 0.6128 0.7137

Exponential 2.0274 1.9424 1.8925 3.3560 3.2736 3.2266 4.7021 4.6126 4.5603

β1(1, 2) 1.5746 1.5346 1.5082 2.3629 2.3476 2.3370 3.1450 3.1410 3.1377

β1(2, 2) 0.9592 0.9580 0.9464 1.0110 1.0359 1.0390 1.0438 1.0833 1.0958

Gumbel 1.1917 1.1631 1.1329 1.2707 1.2598 1.2369 1.2884 1.2945 1.2808

β1(p, q) represents the Beta distribution of first kind with parameters p and q.
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From the Pitman asymptotic relative efficiency comparisons, we have the follow-

ing observations:

1. The proposed test performs better than WMW test for the Uniform, U-

quadratic, β1(1, 2), Exponential and Gumbel distributions for all the considered

pairs of (c, d).

2. The proposed test performs better from than the class of Kumar (Km) tests

for the Uniform, U-quadratic, β1(1, 2), β1(2, 2), Exponential, Gumbel distributions

for all considered choices ofm and (c, d). Additionally, proposed test performs better

than class of Kumar (Km) tests for all the considered choices of m and (c, d) = (2, 1).

But proposed test not performs better than Kumar (Km) tests for Cauchy distribu-

tion.

3. In comparison with the class of tests of Öztürk (OZr,s), the proposed test per-

forms better for the Exponential and Gumbel distributions for all considered pairs

of (r, s) and (c, d). However, for Cauchy distribution, the proposed test performs

better than Öztürk (OZr,s) for all the considered pairs (r, s) and with (c, d) = (3, 1).

4. The proposed test performs better than the class of tests of Kumar (Kr1,r2;i,j)

for the Exponential and Gumbel distributions for all the considered pairs (r1, r2; i, j)

and (c, d).

4.2 Bahadur Asymptotic Relative Efficiency

The approximate Bahadur slope of the test statistics T2c+1,2d+1 is given by

C(T2c+1,2d+1) =
1

σ2
0(T2c+1,2d+1)

[E(T2c+1,2d+1)− E0(T2c+1,2d+1)]
2.

Bahadur ARE of T2c+1,2d+1 with respect to any other test U (say) is given as:

B(T2c+1,2d+1) =
C(T2c+1,2d+1)

C(U)
,

where C(U) is slope of the U test. We now compare performance of the proposed

test in terms of Bahadur ARE, relative to all those tests, which we considered for

comparison in terms of Pitman ARE for various underlying distributions. The values



10 Journal of the Kerala Statistical Association

of Bahadur asymptotic relative efficiency with respect to Wilcoxon-Mann-Whitney

test are given in Table 3. The values of Bahadur asymptotic relative efficiency with

respect to other tests can be found using efficacy from their respective paper.

Table 3: Bahadur asymptotic relative efficiencies of T2c+1,2d+1 relative to

Wilcoxon-Mann-Whitney (WMW) test

Distribution ∆ (c,d)

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

0.05 1.3812 1.3332 1.2818 1.8371 1.8081 1.7539 2.2964 2.2680 2.2018

Uniform 0.10 1.0070 0.9459 0.8863 1.3427 1.2722 1.1899 1.6804 1.5915 1.4817

0.15 0.9733 0.8920 0.8163 1.3034 1.1861 1.0720 1.6344 1.4783 1.3213

0.05 0.2357 0.1966 0.1624 0.3807 0.3116 0.2563 0.5356 0.4305 0.3504

U-quadratic 0.10 0.1193 0.1071 0.0715 0.1932 0.1487 0.1100 0.2693 0.1957 0.1448

0.15 0.0487 0.0834 0.0024 0.0893 0.0818 0.0324 0.1279 0.0962 0.0547

0.05 0.9479 0.9571 0.9533 0.8978 0.9340 0.9456 0.8415 0.8453 0.9184

Normal 0.10 0.9655 0.9695 0.9623 0.9277 0.9584 0.9653 0.8788 0.9283 0.9467

0.15 0.9823 0.9806 0.9696 0.9572 0.9812 0.9827 0.9163 0.9602 0.9728

0.05 0.8946 0.9824 1.0516 0.6530 0.7736 0.8589 0.4848 0.6164 0.7148

Cauchy 0.10 0.9007 0.9834 1.0507 0.6608 0.7736 0.8589 0.4917 0.6194 0.7149

0.15 0.9062 0.9840 1.0487 0.6684 0.7759 0.8577 0.4985 0.6219 0.7139

0.05 0.1243 0.1045 0.0875 0.8340 0.7454 0.6694 1.7276 1.5626 1.4196

Exponential 0.10 0.0592 0.0415 0.0277 0.5615 0.4589 0.3762 1.2291 1.0271 0.8628

0.15 0.0213 0.0104 0.0038 0.3659 0.2712 0.2017 0.8615 0.6644 0.5174

0.05 1.5703 1.4504 1.3471 2.2996 2.1145 1.9453 3.0308 2.7696 2.5269

β1(1, 2) 0.10 1.5394 1.3653 1.2308 2.2083 1.8997 1.6588 1.6588 2.4362 2.0897

0.15 1.4889 1.2746 1.1305 2.0983 1.6992 1.4305 2.7228 2.1363 1.7400

0.05 1.0393 1.0168 0.9890 1.1619 1.1622 1.1413 1.2567 1.2741 1.2596

β1(2, 2) 0.10 1.1027 1.0477 0.9985 1.2922 1.2430 1.1833 1.4506 1.4097 1.3430

0.15 1.1483 1.0515 0.9780 1.3955 1.2738 1.1661 1.6134 1.4769 1.3408

0.05 1.1665 1.1413 1.1136 1.2250 1.2193 1.2010 1.2264 1.2376 1.2291

Gumbel 0.10 1.1405 1.1182 1.0927 1.1789 1.1774 1.1629 1.1650 1.1798 1.1756

0.15 1.1138 1.0939 1.0703 1.1326 1.1344 1.1231 1.1046 1.1218 1.1207

β1(p, q) represents the Beta distribution of first kind with parameters p and q.

From the Bahadur asymptotic relative efficiency comparisons, we note that for

the following cases, the performance of T2c+1,2d+1 test in terms of Bahadur AREs is
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same as that of the corresponding Pitman AREs

1. In comparison with the WMW test, when ∆ = 0.05 and all the considered

pairs (c, d) of the test statistics T2c+1,2d+1 for the Normal, Cauchy and Gumbel

distributions.

2. In comparison with the class of tests of Kumar (Km); when ∆ = 0.05 with

m = 3 and d = 1, and all the pairs (c,d) of T2c+1,2d+1 for the Uniform distribution;

when ∆ = 0.05 with m = 1, and all the pairs (c, d) of T2c+1,2d+1 for the Normal

distribution; when ∆ = 0.10, and all the pairs (c, d) of T2c+1,2d+1 for the Cauchy

distribution; when ∆ = 0.05, and all the pairs (c, d) of T2c+1,2d+1 for the Gumbel

distribution.

3. In comparison with the class of tests of Öztürk OZr,s and Kumar Kr1,r2;i,j ,

when ∆ = 0.05 with any choice of pairs(r, s), (r1, r2; i, j) and all the pairs (c, d) of

T2c+1,2d+1 for the Normal, Cauchy and Gumbel distributions.

5 An Illustration

Eriksen et al. (1986) carried out a study for the alcoholics. Two different thera-

pies were given to patients in the alcohol treatment center. In the control group,

traditional treatment program was given, while in the treatment group along with

traditional treatment program also the classes in social skill training (SST) were

given. The alcohol intakes for the one-year in centiliter were recorded for 12 pa-

tients in the control group and for 11 patients in the treatment group. To test the

null hypothesis H0 versus the alternative hypothesis H1 i.e. to test whether SST

had effect on the patients, we need to test H0 : ∆ = 0 versus H1 : ∆ ̸= 0. Table

4 lists the values of the test statistics T2c+1,2d+1 for some pairs of (c, d) and the

corresponding p-values.

Table 4: Calculated values of T2c+1,2d+1 and the corresponding p-values

(c,d) (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

T2c+1,2d+1 0.9397 0.9886 0.9992 0.9068 0.9810 0.9987 0.8745 0.9734 0.9982

p-value 0.0002 0.0008 0.0020 0.0001 0.0005 0.0017 0.0001 0.0002 0.0015
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From the Table 4, it can be noticed that for all the pairs of (c, d), the p-value is

less than 0.05 which implies that we reject the null hypothesis. Thus, we conclude

that there is significant effect of social skill training on the consumption of alcohol

in the patients.

6 Simulation Study

In this Section, we carried out the Monte Carlo simulation study to find the esti-

mated statistical power and estimated level of significance by generating data from

Uniform distribution for different sample sizes. The shift parameter considered is

∆ = 0.1, 0.2, 0.3, 0.4 and the level of significance is fixed at α = 0.05, 0.10. The sim-

ulation is repeated 10,000 times based on independent random samples of size 10,

15 and 20. The estimated level of significanceand estimated power of the proposed

test are recorded in Tables 5-8.

Table 5: Estimated level of significance for α = 0.05

(c,d)

n1, n2 (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

10,10 0.0478 0.0515 0.0482 0.0624 0.0719 0.0711 0.0640 0.0731 0.0712

15,10 0.0459 0.0456 0.0480 0.0540 0.0567 0.0659 0.0568 0.0591 0.0678

15,15 0.0460 0.0477 0.0491 0.0559 0.0569 0.0620 0.0569 0.0584 0.0650

20,10 0.0480 0.0489 0.0502 0.0541 0.0545 0.0570 0.0531 0.0575 0.0577

20,15 0.0485 0.0492 0.0525 0.0531 0.0538 0.0579 0.0555 0.0562 0.0579

20,20 0.0489 0.0499 0.0520 0.0552 0.0561 0.0567 0.0559 0.0559 0.0559

Table 6: Estimated level of significance for α = 0.10

(c,d)

n1, n2 (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

10,10 0.0995 0.1052 0.1243 0.0968 0.1098 0.1116 0.1073 0.1032 0.1167

15,10 0.1054 0.1075 0.1121 0.0936 0.1087 0.1088 0.0899 0.1099 0.1167

15,15 0.1040 0.1088 0.1101 0.0906 0.1080 0.1076 0.0901 0.1083 0.1109

20,10 0.1025 0.1055 0.1056 0.0994 0.1044 0.1029 0.0991 0.1021 0.1077

20,15 0.1080 0.1024 0.1029 0.0956 0.1028 0.1027 0.0987 0.1001 0.1023

20,20 0.1007 0.1012 0.1015 0.0988 0.1011 0.1010 0.0918 0.1090 0.1019
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Table 7: Estimated statistical power of T2c+1,2d+1 at α = 0.05

(c,d)

n1, n2 ∆ (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

0.1 0.1705 0.1681 0.1594 0.2098 0.2246 0.2263 0.2544 0.2596 0.2674

10,10 0.2 0.3787 0.3659 0.3462 0.4596 0.4715 0.4572 0.5204 0.5366 0.5426

0.3 0.6331 0.6013 0.5715 0.7003 0.7072 0.7145 0.7592 0.7608 0.7649

0.4 0.8334 0.7991 0.7732 0.8842 0.8853 0.8894 0.9131 0.9211 0.9293

0.1 0.1706 0.1560 0.1580 0.2312 0.2350 0.2400 0.2587 0.2597 0.2698

15,10 0.2 0.4162 0.4016 0.3732 0.5101 0.5200 0.5260 0.5514 0.5610 0.5690

0.3 0.6914 0.6773 0.6144 0.7500 0.7535 0.7560 0.8246 0.8297 0.8311

0.4 0.8789 0.8806 0.8324 0.9385 0.9412 0.9457 0.9542 0.9588 0.9633

0.1 0.2046 0.1820 0.1765 0.2530 0.2580 0.2596 0.2950 0.2997 0.3014

15,15 0.2 0.4840 0.4655 0.4430 0.5620 0.5635 0.5680 0.6280 0.6330 0.6344

0.3 0.7810 0.7560 0.7113 0.8330 0.8375 0.8444 0.8610 0.8650 0.8677

0.4 0.9310 0.9280 0.9130 0.9690 0.9700 0.9740 0.9747 0.9755 0.9788

0.1 0.1939 0.1930 0.1821 0.2241 0.2339 0.2371 0.2647 0.2697 0.2710

20,10 0.2 0.4369 0.3930 0.3724 0.5296 0.5386 0.5427 0.5917 0.5940 0.5966

0.3 0.7378 0.6960 0.6700 0.8180 0.8222 0.8299 0.8564 0.8674 0.8698

0.4 0.9012 0.9000 0.8915 0.9550 0.9456 0.9496 0.9731 0.9733 0.9765

0.1 0.2084 0.1970 0.1796 0.2565 0.2596 0.2641 0.2920 0.3011 0.3112

20,15 0.2 0.5268 0.4780 0.4185 0.6060 0.6111 0.6187 0.7080 0.7118 0.7148

0.3 0.8204 0.7690 0.7509 0.8806 0.8910 0.8954 0.9150 0.9201 0.9245

0.4 0.9517 0.9470 0.9299 0.9793 0.9799 0.9815 0.9801 0.9805 0.9878

0.1 0.2315 0.2256 0.2178 0.3080 0.3131 0.3165 0.3355 0.3415 0.3455

20,20 0.2 0.5847 0.5420 0.5160 0.6820 0.6824 0.6941 0.7180 0.7225 0.7265

0.3 0.8664 0.8540 0.7940 0.9200 0.9240 0.9254 0.9312 0.9354 0.9369

0.4 0.9720 0.9740 0.9570 0.9820 0.9841 0.9910 0.9840 0.9845 0.9898
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Table 8: Estimated statistical power of T2c+1,2d+1 at α= 0.10

(c,d)

n1, n2 ∆ (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

0.1 0.2577 0.2555 0.2459 0.2806 0.3086 0.3293 0.3178 0.3241 0.3333

10,10 0.2 0.4906 0.4885 0.4742 0.5486 0.5566 0.5602 0.6054 0.6312 0.6374

0.3 0.7210 0.7086 0.7012 0.7784 0.7798 0.7818 0.8166 0.8210 0.8347

0.4 0.8922 0.8795 0.8629 0.9098 0.9112 0.9178 0.9411 0.9419 0.9456

0.1 0.2556 0.2463 0.2354 0.3012 0.3108 0.3154 0.3123 0.3200 0.3219

15,10 0.2 0.5272 0.5147 0.5100 0.5901 0.5944 0.6018 0.6298 0.6318 0.6357

0.3 0.7822 0.7489 0.7421 0.8154 0.8155 0.8198 0.8439 0.8469 0.8479

0.4 0.9384 0.9245 0.9200 0.9307 0.9333 0.9414 0.9380 0.9391 0.9443

0.1 0.2838 0.2777 0.2612 0.3196 0.3210 0.3241 0.3454 0.3471 0.3499

15,15 0.2 0.5974 0.5845 0.5780 0.6185 0.6211 0.6220 0.6437 0.6518 0.6547

0.3 0.8536 0.8422 0.8327 0.8700 0.8710 0.8742 0.8890 0.8925 0.8945

0.4 0.9664 0.9500 0.9453 0.9691 0.9729 0.9744 0.9710 0.9751 0.9763

0.1 0.2624 0.2551 0.2492 0.3130 0.3211 0.3232 0.3300 0.3347 0.3451

20,10 0.2 0.5520 0.5422 0.5395 0.5912 0.6014 0.6088 0.6197 0.6229 0.6239

0.3 0.8004 0.7816 0.7777 0.8212 0.8245 0.8265 0.8406 0.8436 0.8454

0.4 0.9312 0.9253 0.9185 0.9560 0.9569 0.9645 0.9592 0.9634 0.9665

0.1 0.3001 0.2899 0.2774 0.3190 0.3222 0.3254 0.3454 0.3470 0.3536

20,15 0.2 0.6282 0.6290 0.6179 0.6564 0.6599 0.6641 0.6697 0.6712 0.6754

0.3 0.8688 0.8530 0.8412 0.8738 0.8755 0.8763 0.8957 0.8977 0.8997

0.4 0.9770 0.9635 0.9527 0.9799 0.9810 0.9854 0.9835 0.9841 0.9844

0.1 0.3354 0.3075 0.2963 0.3569 0.3689 0.3699 0.3723 0.3814 0.3854

20,20 0.2 0.6421 0.6345 0.6254 0.6732 0.6756 0.6785 0.6915 0.6987 0.7024

0.3 0.8800 0.8712 0.8632 0.8912 0.8934 0.8966 0.9100 0.9124 0.9137

0.4 0.9805 0.9754 0.9709 0.9856 0.9891 0.9898 0.9900 0.9935 0.9997

From the Tables 5-8, we have the following observations:

1. The proposed tests achieve 90% power at α = 0.10 for sample sizes n1 =

15, n2 = 10 with c, d ≥ 1 and shift ∆ = 0.4. Additionally, 95% power of the pro-

posed test at α = 0.05 is achieved for sample sizes n1 = 15, n2 = 15 with c ≥ 1, d ≥ 2

and shift ∆ = 0.4. Moreover, with the increase of sample size, power of the proposed

test also increases.
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2. The estimated level of significance is achieved with sample size n1 = 10, n2 = 10

with c = d = 1 for α = 0.10. However for α = 0.05, the estimated level of signifi-

cance is achieved with n1 = 20, n2 = 20 with c = 2, d = 1.
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Kössler, W. (2010). Max-type rank tests, U-tests, and adaptive tests for the two-

sample location problem - an asymptotic power study, Computational Statistics

and Data Analysis, 54, 2053-2065.
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