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ABSTRACT

A new generalized family called Generalized Lehmann Alternative Type II

(GLA2) family is introduced and studied in this paper. Special cases of this

family using Uniform and Kumaraswamy distributions as base are developed

and their statistical properties studied. Generalized Lehmann Alternative Type

II Exponential (GLA2E) distribution is also developed and its statistical prop-

erties are obtained along with application. The new distribution is applied to

a real data set to show the effectiveness of the distribution and it is verified

that the new model is a better model than the existing exponential model and

Marshall-Olkin extended exponential model. A detailed study on the record

value theory associated with GLA2E distribution is conducted. Using the mean,

variance and covariance of upper record values of the extended model, BLUE’s

of location and scale parameters are obtained and future records are predicted

which has a number of practical uses. The 95% confidence interval for location

and scale parameters are also computed. The result is applied to a real data set

to validate the results. Entropy of record values is derived. This result will be
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useful in characterization of record values based on entropies and a quantifica-

tion of information contained in each additional record value based on entropy

measure.

Key words and Phrases: Lehmann Alternative , Entropy, Hazard rate function,

Kumaraswamy distribution, Marshall-Olkin distribution, Record value.

1 Introduction

The properties and estimation methods for parameters of the exponentiated family

of distributions have been studied by many authors, see Gupta and Kundu (2001a,

2001b, 2007), Pal et al. (2006), Nadarajah and Kotz (2006a) and Nadarajah et

al. (2013). Tahir and Nadarajah (2015) discussed about Lehmann alternative type

family of distributions. In the literature there exist two types of Lehmann alternative

type family of distributions for obtaining the exponentiated family of distributions.

1.1 Lehmann Alternative 1 (LA1)

If F(x) is the cdf of the baseline distribution, then LA1 family of distributions is

obtained by taking the βth - power of F(x) so that

G(x) = (F (x))β, (1)

where β > 0 is a positive real parameter.The probability density function (pdf)

corresponding to (1) is

g(x) = βf(x)(F (x))β−1, (2)

where f(x) = d
dxF (x) denotes the pdf of F. For any lifetime random variable t,

the survival (reliability) function (sf), G(t), the hazard (failure) rate function (hrf),

h(t), the reversed hazard rate function (rhrf), r(t), and the cumulative hazard rate

function (chrf), H(t), associated with (1) and (2) are G(t) = 1 − [F (t)]β, h(t) =

βf(t)[F (t)]β−1[1− [F (t)]β]−1, r(t) = βf(t)[F (t)]−1 and H(t) = − log[1− [F (t)]β].
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1.2 Lehmann Alternative 2 (LA2)

If F(x) is the cdf and F (x) = 1 − F (x) is the sf of the baseline distribution, then

the survival function of LA2 family of distributions is obtained by taking the βth -

power of F (x) so that

G(x) = [F (x)]β, (3)

where β is a positive real parameter. The LA2 cdf may also be written as

G(x) = 1− [1− F (x)]β. (4)

The pdf corresponding to (4) is

g(x) = βf(x)[1− F (x)]β−1 (5)

For any lifetime random variable t, the sf, hrf, rhrf and chrf associated with (3) and

(4) are G(t) = [1− F (t)]β, h(t) = βf(t)[1− F (t)]−1, r(t) = βf(t)[1− F (t)]β−1{1−
[1− F (t)]β}−1 and H(t) = −β log[1− F (t)].

Nadarajah and Kotz (2006 a), Nadarajah (2006) and Rao et al. (2013) used the

LA2 approach for introducing exponentiated Fréchet, exponentiated Gumbel and

exponentiated log-logistic distributions. For more applications see Abd-Elfattah

and Omima (2009), Abd-Elfattah et al. (2010), Rao et al. (2012, 2013), and Al-

Nasser and Al-Omari (2013).

1.3 Marshall - Olkin Family of Distributions

Let X be a rv with a distribution function F (x) and survival function F (x). By

adding a new parameter, say δ, Marshall and Olkin (1997) introduced a new family

of distributions namely Marshall - Olkin family of distributions with distribution

function G(x) given by

G(x) =
F (x)

δ + (1− δ)F (x)
, x ∈ R and δ > 0. (6)

The corresponding survival function is

Ḡ(x) =
δF (x)

1− (1− δ)F (x)
, x ∈ R and δ > 0. (7)
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If δ = 1, then G=F. If F has a density and hazard rate function, rF , then by using

the survival function G, the density of G is given by

g(x; δ) =
δf(x)

(1− (1− δ)F (x))2
, x ∈ R and δ > 0 (8)

and hazard rate function is

h(x; δ) =
rF (x)

1− (1− δ)F (x)
, x ∈ R and δ > 0.

Recently, many authors have developed various Marshall - Olkin distributions with

respect to Gamma, Pareto, Weibull, Burr, Gumbel, Fréchet, Rayleigh, Kumaraswamy,

Linear Exponential, Lomax and other distributions. For details, see Jose and Alice

(2003, 2004 a, 2004 b), Ghitany et.al (2005, 2007), Jayakumar and Mathew (2008),

Jose et.al (2010, 2011), Jose and Rani (2013), Krishna et al. ( 2013 a, 2013 b), Jose

and Remya (2015).

2 Generalized Lehmann Alternative Type II Family of

Distributions

Let X be a random variable with cumulative distribution function (cdf) F(x). The

survival function (sf) and probability density function (pdf) of X are denoted by

F̄ (x) = 1− F (x) and f(x) respectively. By Lehmann Alternative Type II exponen-

tiated family discussed in section (1.2), we can take the cdf as

T (x) = 1− (F̄ (x))β. (9)

The sf is

T̄ (x) = (F̄ (x))β. (10)

The corresponding pdf is

t(x) = βf(x)(F̄ (x))β−1. (11)

Marshall and Olkin (1997) introduced a new method of adding a parameter to a

family of distributions to develop the Marshall-Olkin family which is discussed in
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section (1.3) and cumulative distribution function is given in (6).

Applying (9) in (6), we get the new family of distributions called Generalized

Lehmann Alternative Type II family with parameters (δ, β) with cdf

G(x) =
T (x)

1− δT (x)
.

On simplification, we get

G(x) =
1− (F (x))β

1− δ(F (x))β
. (12)

The sf is

G(x) = 1− 1− (F (x))β

1− δ(F (x))β
.

On simplification, we get

G(x) =
δ(F̄ (x))β

[1− δ̄(F̄ (x))β]
. (13)

The corresponding pdf is

g(x) =
δβf(x)(F̄ (x))β−1

[1− δ̄(F̄ (x))β]2
. (14)

The new family is referred to as GLA2 (δ, β).

The hazard rate function is h(x) = g(x)

G(x)
and is obtained as

h(x) =
βf(x)

F̄ (x)[1− δ̄(F̄ (x))β]
. (15)

2.1 Maximum Likelihood Estimation

Let X1, X2, ...Xn be a random sample of size n from GLA2 family, then the likeli-

hood function is

L = (δβ)n

n∏

i=1

f(xi
[
F (xi)

]β−1
)

n∏

i=1

[
1− δ

[
F (xi)

]β]2
.
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The log likelihood function is given by

logL = n log(δβ) +

n∑

i=1

log f(xi) + (β − 1)

n∑

i=1

logF (xi)− 2

n∑

i=1

log
[
1− δ(F (xi))

β
]
.

The partial derivatives of the log likelihood with respect to δ and β are obtained as

∂ logL

∂δ
=
n

δ
− 2

n∑

i=1

(F (xi))
β

[
1− δ̄(F (xi))β

]

and

∂ logL

∂β
=
n

β
+

n∑

i=1

logF (xi) + 2

n∑

i=1

δ(F (xi))
β logF (xi)[

1− δ(F (xi))β
] .

In order to estimate the parameters, we have to solve the normal equations

∂ logL

∂δ
= 0;

∂ logL

∂β
= 0. (16)

Since (16) cannot be solved analytically, numerical iteration technique is used

to get a solution for the parameters δ and β. One may use the nlm package in R

software to get the maximum likelihood estimator (MLE) for the parameters.

3 Some Special Generalized Lehmann Alternative Type

II Models

In this section, we obtain some special GLA2 models using Uniform distribution

and Kumaraswamy distribution. Also we derive their probability density function

(pdf), cumulative density function (cdf) and quantile and the different shapes of

density function and hazard rate function.

3.1 Generalized Lehmann Alternative Type II Uniform distribu-

tion

Let X follows Uniform distribution with parameter θ with pdf, cdf and survival

function g(x) = 1
θ , G(x) = x

θ and Ḡ(x) = 1 − x
θ respectively. If we apply the cdf,
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survival function and pdf of Uniform distribution in the cdf, survival function and

pdf of GLA2 family given in (12), (13) and (14), we get the cdf, survival function

and pdf of the new distribution called Generalized Lehmann Alternative Type II

Uniform distribution with parameters δ, β, θ and is denoted by GLA2U.

The cdf is

G(x) =
1− (1− x

θ )β

1− δ(1− x
θ )β

x, δ, β, θ > 0.

On simplification, we get

G(x) =
θβ − (θ − x)β

θβ − δ(θ − x)β
x, δ, β, θ > 0. (17)

The corresponding sf G(x) = 1−G(x) is

G(x) =
δ(θ − x)β

θβ − δ(θ − x)β
x, δ, β, θ > 0. (18)

The corresponding pdf is

g(x) =
δβθβ(θ − x)β−1

[θβ − δ(θ − x)β]2
x, δ, β, θ > 0. (19)

The density plot for different values of the parameters are given in Fig 1

The hazard rate function is h(x) = g(x)

G(x)
and is obtained as

h(x) =
βθβ

(θ − x)[θβ − δ(θ − x)β]
x, δ, β, θ > 0.

The graph of h(x) is given in Fig 2. It gives J- shaped and bath tub shaped

curves.

The uth quantile of GLA2U distribution can be obtained by inverting G(x) = u

and is given by

xu = θ

{
1−

[
(u− 1)

uδ + 1

] 1
β

}
, (20)

where 0 < u < 1.
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Figure 1: Probability density function of GLA2U for various values of δ, β and θ

3.2 Generalized Lehmann Alternative Type II Kumaraswamy Dis-

tribution

Let X follows Kumaraswamy distribution with parameters α and γ with cdf, sur-

vival function and pdf F (x) = 1 − (1 − xα)γ , F̄ (x) = (1 − xα)γ and f(x) =

αγx(α−1)(1 − xα)(γ−1) respectively. If we apply the cdf, survival function and pdf

of Kumaraswamy distribution in the cdf, survival function and pdf of Generalized

Lehmann Alternative Type II family given in (12), (13) and (14), we get the cdf,

survival function and pdf of the new distribution called Generalized Lehmann Alter-

native Type II Kumaraswamy distribution with parameters δ, β, α and γ is denoted

by GLA2Kw.

The cdf is

G(x) =
1− (1− xα)βγ

1− δ(1− xα)βγ
x, δ, β, α, γ > 0. (21)
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Figure 2: Hazard rate function of GLA2U for various values of δ, β and θ

The corresponding sf Ḡ(x) = 1−G(x) is

Ḡ(x) =
δ(1− xα)βγ

1− δ(1− xα)βγ
x, δ, β, α, γ > 0. (22)

The corresponding pdf is

g(x) =
δβαγx(α−1)(1− xα)(γ−1)(1− xα)γ(β−1)

[1− δ(1− xα)βγ ]2
x, δ, β, α, γ > 0. (23)

The density plot for different values of the parameters are given in Figure 3.

The hazard rate function is h(x) = g(x)

G(x)
and is obtained as

h(x) =
βαγx(α−1)(1− xα)(γ−1)

(1− xα)γ [1− δ(1− xα)βγ ]
x, δ, β, α, γ > 0. (24)

The plot of h(x) for different values of the parameters are given in Figure 4. It

shows increasing and bath tub shaped curves.
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Figure 3: Probability density function of GLA2Kw for various values of δ, β, α and

γ
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Figure 4: Hazard rate function of GLA2Kw for various values of δ, β, α and γ

The uth quantile of GLA2Kw distribution can be obtained by inverting G(x) = u

and is given by

xu =

{
1−

[
1− u

1− u+ uδ

] 1
βγ

} 1
α

(25)

where 0 < u < 1.

3.3 Generalized Lehmann Alternative Type II Exponential Distri-

bution

Exponential distribution plays a central role in analysis of lifetime or survival data, in

part of their convenient statistical theory, their important lack of memory property

and their constant hazard rates. In circumstances where the one-parameter family

of exponential distributions is not sufficiently broad, a number of wider families such

as the gamma, Weibull and Gompertz-Makeham distributions are in common use.

Let F (x) = e−λx, x ≥ 0 is the survival function of exponential distribution, by
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(9) we get the new distribution called Generalized Lehmann Alternative Type II

Exponential (GLA2E) distribution with parameters (δ, β, λ) with cdf

G(x) =
eβλx − 1

eβλx − δ
x ≥ 0, λ, β and δ > 0, δ = 1− δ. (26)

The survival function

Ḡ(x) =
δ

eβλx − δ
x ≥ 0, λ, β and δ > 0, δ = 1− δ. (27)

Then the pdf is

g(x) =
δβλeβλx

[eβλx − δ]2
x ≥ 0, λ, β and δ > 0, δ = 1− δ. (28)

The graph of g(x) is given in Fig 5.
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Figure 5: Probability density function of GLA2E (δ, β, λ) for various values of δ, β

and λ

The hazard rate is

h(x) =
βλeβλx

eβλx − δ
x ≥ 0, λ, β and δ > 0. (29)
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The graph of h(x) is given in Fig 6. It can be seen that the hazard rate is DFR

for δ < 1, and IFR for δ > 1. Note that for δ = 1, h(x)=1, showing constant failure

rate. This establishes the wide applicability of the GLA2E distribution in reliability

modeling.
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Figure 6: Hazard rate function of GLA2E (δ, β, λ) for various values of δ, β and λ

The uth quantile is obtained by inverting the cdf given in (26).

xu =
1

βλ
log

[
uδ − 1

u− 1

]
, (30)

where U follows U(0,1).
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3.3.1 Maximum Likelihood Estimation

Let x1, x2, ..., xn be a random sample of size n from GLA2E(δ, β, λ) distribution

with pdf (28). The likelihood function is given by

L(δ, β, λ) =
(δβλ)nenβλx̄

n∏

i=1

(eβλxi − (1− δ))2

.

The log likelihood function is

logL = nlog(δβλ) +

n∑

i=1

βλxi − 2

n∑

i=1

log[eβλxi − δ].

The MLE’s of δ, β and λ are given by the solution of the three equations:

n

δ
− 2

n∑

i=1

1

eβλxi − δ
= 0, (31)

n

λ
+ nβx− 2

n∑

i=1

βxie
βλxi

eβλxi − δ
= 0 (32)

and
n

β
+ nλx− 2

n∑

i=1

λxie
βλxi

eβλxi − δ
= 0. (33)

When δ = 1, the model reduces to exponential distribution. Then we get, λ̂ = 1
x

Here we show that the Generalized Lehmann Alternative Type II model of Ex-

ponential distribution can be a better model than the one parameter exponential

model and Marshall- Olkin Extended Exponential model when it is fitted for the

following data. The data represents the failure times of the air conditioning system

of an airplane reported in Linhart and Zucchini (1986) and is given in Table 1.

Using R program we estimate the parameters and obtain log likelihood, K-S

statistic and p-value. The results are given in Table 2. From the table we can

observe that the p-value is greater for GLA2E distribution than that of Exponen-

tial distribution and Marshall-Olkin Extended Exponential distribution. So we can
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Table 1: Failure times of the air conditioning system of an airplane

23 261 87 7 120 14 62 47 225 71

246 21 42 20 5 12 120 11 3 14

71 11 14 11 16 90 1 16 52 95

Table 2: Summary statistics for the failure time data of the air conditioning system

of an airplane.

Model Parameter MLE -log L K-S statistic p-value

Exponential λ 0.0168 152.6297 0.213 0.132

MOEE δ 0.4072 151.425 0.129 0.6978

λ 0.0106

GLA2E δ 0.3803

λ 0.0039 151.42 0.123 0.7508

β 2.6135

conclude that GLA2E distribution is a better model than Exponential distribution

and Marshall-Olkin Extended distribution for the failure time data. The P-P plot

and Q-Q plot for the data is given in Figure 7.

4 Record Value Theory for Generalized Lehmann Al-

ternative Type II Exponential Distribution

Let X1, X2, ... be an infinite sequence of i.i.d. random variables having the same

distribution as the (population) random variable X. An observation Xj will be called

an upper record value (or simply a record), if its value exceeds that of all previous

observations. Then Xj is a record if Xj > Xi for every i < j. The time at

which records appear are of interest. Let Xj be observed at time j. Then the

record time sequence {Tn, n ≥ 0} is defined as T0 = 1 with probability 1 and for

n ≥ 1, Tn = min{j : Xj > XTn−1}.The record value sequence {Rn} is then defined

by Rn = XTn ; n = 1, 2, .... Then Rn is called the nth record. Let gRn(x) denote
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Figure 7: QQ plot and PP plot of GLA2E distribution
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the p.d.f. of the nth record. Then

gRn(x) =
g(x)[− log(Ḡ(x))]n

n!
,−∞ < x <∞. (34)

The joint p.d.f. of a pair of records say Rm, Rn is given by

gRm,Rn(x, y) =
[− logG(x)]m−1

(m− 1)!

[
− log G(y)

G(x)

]n−m−1

(n−m− 1)!

g(x)g(y)

1−G(x)
,−∞ < x < y <∞.

(35)

Record data arise in a wide variety of practical situations such as industrial stress

testing, meteorological analysis, hydrology, seismology, sporting and athletic events

and oil mining surveys. In experiments related to these contexts measurements may

be made sequentially and only the record values are observed. Usually the number

of records of such experiments are considerably smaller than the complete sample

size. This ‘measurement saving’ can be important when the measurements of these

experiments are either costly or when the entire sample is destroyed.

Chandler (1952) introduced the study of record values and documented many of

the basic properties of records. Arnold et al. (1998), Balakrishnan and Ahsanullah

(1994), Balakrishnan et al. (1995), etc. have made significant contributions to the

theory of records. Arnold et al. (1998) provide an excellent discussion on various

results with respect to record values. Now we derive some record statistics with

respect to Generalized Lehmann Alternative Type II Exponential distribution with

λ = 1 for which the pdf is

g(x) =
δβeβx

(eβx − δ)2
, x > 0, δ, β > 0, δ = 1− δ (36)

By (34) the density function of the nth record for GLA2E(δ, β, λ) distribution is

given by

gRn(x) =
δβeβx

n![eβx − δ̄]2
[
− ln

(
δ

eβx − δ̄

)]n
, 0 < x <∞ (37)

Then the single moment of nth record statistic can be written as

αn =
1

β

∫ ∞

0
ln(δ + δeu)

un

n!
e−udu. (38)
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Table 3: Mean of upper record values for β = 1.5

n δ =1 δ =1.5 δ=2 δ =2.5 δ=3 δ =3.5 δ =4

1 1.3333 1.5434 1.7005 1.8265 1.9319 2.0225 2.1020

2 2 2.2410 2.4168 2.5554 2.6699 2.7675 2.8526

3 2.6667 2.9226 3.1038 3.2508 3.3691 3.4696 3.5568

4 3.3333 3.5965 3.7846 3.9311 4.0512 4.1528 4.2410

5 4 4.2668 4.4568 4.6044 4.7252 4.8275 4.9161

6 4.6667 4.9352 5.1261 5.2743 5.3955 5.4980 5.5869

7 5.3333 5.6028 5.7941 5.9426 6.0640 6.1666 6.2555

Theorem 4.1. The single moment of nth upper record value for δ > 0.5 is given by

αn =
1

β

{
ln(δ) + (n+ 1)−

∞∑

i=1

ki

i(i+ 1)(n+1)

}
, where k = 1− 1

δ
. (39)

Proof From (38)and using the fact that ln[1− ke−u] = −
∞∑

i=1

kie−iu

i
,

αn =
1

β

{
ln(δ)

∫ ∞

0

une−u

n!
du+

∫ ∞

0

un+1e−u

n!
du−

∞∑

i=1

ki

i

∫ ∞

0

e−(i+1)uun

n!
du

}
,

which on evaluation directly gives (39).

Using the result (39) the mean of record values from GLA2E(δ, β, λ) for different

values of δ and for β = 1.5 and for δ = 1.5 and for different values of β are evaluated

and presented in Table 3 and Table 4.

Theorem 4.2. The second single moment of nth upper record value is

α2
n =

1

β2

{
ln(δ)2 + (n+ 1)(n+ 2) + 2 ln(δ)− 2(n+ 1)

∞∑

i=1

ki

i(i+ 1)n+2
− 2 ln(δ)

×
∞∑

i=1

ki

i(i+ 1)(n+1)
+

∞∑

i=1

∞∑

j=1

ki+j

ij(i+ j + 1)(n+1)

}
. (40)

Proof : From (38) the 2nd single moment of nth record value is given by
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Table 4: Mean of upper record values for δ = 1.5

n β =1 β =1.5 β=2 β =2.5 β=3 β =3.5 β =4

1 2.3150 1.5434 1.1575 0.9260 0.7717 0.6614 0.5788

2 3.3615 2.2410 1.6808 1.3446 1.1205 0.9604 0.8404

3 4.3839 2.9226 2.1919 1.7536 1.4613 1.2525 1.0960

4 5.3948 3.5965 2.6974 2.1579 1.7983 1.5414 1.3487

5 6.4002 4.2668 3.2001 2.5601 2.1334 1.8286 1.6000

6 7.4028 5.1261 3.7014 2.9611 2.4676 2.1151 1.8507

7 8.4042 5.6028 4.2021 3.3617 2.8014 2.4012 2.1010

α2
n =

∫ ∞

0

{
ln[δeu(1− ke−u)]

}2 une−u

(n)!
du, k = 1− 1

δ

= (ln δ)2 + (n+ 1)(n+ 2) + 2(n+ 1) lnδ − 2(n+ 1)
∞∑

i=1

ki

i(i+ 1)(n+2)
− 2

× ln δ
∞∑

i=1

ki

i(i+ 1)n+1
+
∞∑

i=1

∞∑

j=1

ki+j

ij

∫ ∞

0
e−(i+j+1)u u

n

(n)!
du.

On simplification using the fact that (a1 + a2)2 =

2∑

i=1

2∑

j=1

aiaj we get (40).

By (35) the joint pdf of mth and nth record values of GLA2E (δ, β) distribution

is given by

gRm,Rn(x) =

δβ2

[
− ln

{
δ

eβx − (1− δ)

}]m

(m)!

1

[eβx − (1− δ)] .

×

[
− ln

{
eβx − (1− δ)
ey − (1− δ)

}]n−m−1

(n−m− 1)!

× eβy

[eβy − (1− δ)]2 , 0 < x < y <∞.
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Theorem 4.3. For 1 ≤ m ≤ n the product moment

αm,n =
1

β2

{
(ln δ)2 + ln δ(m+ n+ 2) + (m+ 1)(n+ 2)− [ln δ + (n−m)]

×
∞∑

i=1

ki

i(i+ 1)m+1
− (m+ 1)

∞∑

i=1

ki

i(i+ 1)m+2
− ln δ

∞∑

i=1

kj

j(j + 1)n+1
− (m+ 1)

×
∞∑

j=1

kj

j(j + 1)n+2
+

∞∑

i=1

∞∑

j=1

k(i+j)

ij(j + 1)n−m(i+ j + 1)(m+1)

}
(41)

Proof :

αm,n =
δβ2

(m)!

∫ ∞

0
x

[
− ln

(
δ

eβx − δ

)]m−1 eβx

eβx − δ
Ix dx (42)

where

Ix =
1

(n−m− 1)!

∫ ∞

x

yeβy

(eβy − δ)2

[
− ln

(
eβx − δ
eβy − δ

)](n−m−1)

dy

now making use of the transformation u = − ln
(
eβx−δ
eβy−δ

)

and writing ln
[
1−

(
δ−1
ex−δ

)
e−u
]

= −∑∞i=1

(
δ−1
ex−δ

)i
e−iu
i we get

Ix =
1

β2(eβx − δ)

[
ln(eβx − δ) + (n−m)−

∞∑

i=1

(
δ − 1

ex − δ

)i 1

i(i+ 1)n−m

]

substituting the expression of Ix in (42) and using the transformation t = − ln
(

δ
eβx−δ

)

yields (41). Using (39), (40) and (41) numerical values of variance and covariance

of upper record values are obtained by MATLAB program for β = 1.5 and various

values of δ and is presented in Table 5.

4.1 Estimation of the location and scale parameters

In industry experiments, the number of measurements can be made lesser if the

record values are observed instead of complete sample for estimation of parameters.

There are also situations in which an observation is stored if it is a record value. This

includes studies in meteorology, hydrology, seismology athletic events and mining.
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Table 5: Variance and covariance of upper record values for β = 1.5

m n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

1 1 0.8889 0.9747 1.0295 1.0682 1.0973 1.1200 1.1384

2 0.8889 0.9516 0.9900 1.0162 1.0354 1.0502 1.0619

3 0.8889 0.9406 0.9718 0.9929 1.0083 1.0200 1.0293

4 0.8889 0.9353 0.9632 0.9820 0.9957 1.0062 1.0144

5 0.8889 0.9327 0.9591 0.9768 0.9898 0.9996 1.0074

6 0.8889 0.9315 0.9570 0.9743 0.9869 0.9965 1.0041

7 0.8889 0.9308 0.9560 0.9731 0.9855 0.9949 1.0024

2 2 1.3333 1.3943 1.4298 1.4532 1.4699 1.4825 1.4923

3 1.3333 1.3783 1.4039 1.4204 1.4321 1.4408 1.4475

4 1.3333 1.3706 1.3916 1.4051 1.4146 1.4217 1.4271

5 1.3333 1.3669 1.3857 1.3978 1.4063 1.4126 1.4175

6 1.3333 1.3650 1.3828 1.3943 1.4023 1.4083 1.4129

7 1.3333 1.3641 1.3814 1.3925 1.4003 1.4061 1.4106

3 3 1.7778 1.8171 1.8387 1.8524 1.8619 1.8689 1.8743

4 1.7778 1.8070 1.8228 1.8327 1.8396 1.8446 1.8484

5 1.7778 1.8020 1.8151 1.8233 1.8289 1.8330 1.8362

6 1.7778 1.7996 1.8113 1.8187 1.8237 1.8274 1.8303

7 1.7778 1.7984 1.8095 1.8164 1.8212 1.8247 1.8274

4 4 2.2222 2.2463 2.2590 2.2670 2.2724 2.2763 2.2793

5 2.2222 2.2401 2.2496 2.2554 2.2594 2.2622 2.2644

6 2.2222 2.2371 2.2450 2.2498 2.2531 2.2554 2.2572

7 2.2222 2.2356 2.2427 2.2470 2.2500 2.2521 2.2537

5 5 2.6667 2.6809 2.6883 2.6928 2.6959 2.6981 2.6998

6 2.6667 2.6773 2.6828 2.6862 2.6884 2.6901 2.6913

7 2.6667 2.6755 2.6801 2.6829 2.6848 2.6861 2.6871

6 6 3.1111 3.1193 3.1236 3.1261 3.1279 3.1291 3.1300

7 3.1111 3.1173 3.1204 3.1223 3.1236 3.1245 3.1252

7 7 3.5556 3.5602 3.5626 3.5640 3.5650 3.5657 3.5662
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Recently much studies have been made on parametric and non parametric inferences

based on record values. Raquab (2002) obtained inference for generalised exponen-

tial distribution based on record statistics. Soliman et al. made a comparison of

Bayesian and non-Bayesian estimates using record statistics from Weibull model.

Sultan et al. (2008) obtained the estimation from record values and predicted fu-

ture records for gamma distribution. Sultan (2010) discussed different methods of

estimation based on record values from inverse Weibull distribution.

Consider the general location-scale family of distributions with cdf F (x, µ, σ) =

F (x−µσ ) and pdf f(x, µ, σ) = 1
σf(x−µσ ) and assume that the upper record values

R1, R2, ....Rn are available. Then BLUE’s of µ and σ are given respectively by, (see

Balakrishnan and Cochen, 1991)

µ∗ =
αTΣ−1α1TΣ−1 − αTΣ−11αTΣ−1

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2
R =

n∑

i=1

aiRi (43)

σ∗ =
1TΣ−11αTΣ−1 − 1TΣ−1α1TΣ−1

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2
R =

n∑

i=1

biRi (44)

where α denotes the column vector of the expected values of observed upper record

values from the distribution F(x), Σ denotes the variance-covariance matrix of the

record values from the distribution F(x), and 1 is a column vector of dimension n

with all its entries as 1.

The three parameter Generalized Lehmann Alternative Type II exponential distri-

bution has the probability density function given by

g(y) =
δe

(y−µ)
σ

σ(e(
(y−µ)
σ

) − δ)2
, y > µ, δ, σ > 0,

where δ, µ and σ are the shape,location and scale parameters respectively. By mak-

ing use of means, variances and covariances presented in Table 3, Table 4, and Table

5, we calculate the coefficients of BLUEs ai and bi, i=1,2,...n for different values

of shape parameter δ and n and presented in Table 6 and Table 7. It can be noted

from these tables that

n∑

i=1

ai = 1 and

n∑

i=1

bi = 0
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Table 6: Coefficients of the BLUE of µ for β = 1.5

n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

2 2.9999 3.2124 3.3740 3.5058 3.6178 3.7148 3.8004

-1.9999 -2.2124 -2.3740 -2.5058 -2.6178 -2.7148 -2.8004

3 2.0000 2.1061 2.1921 2.2525 2.3077 2.3562 2.3990

-0.0002 0.0262 0.0403 0.0612 0.0750 0.0854 0.0948

-0.9998 -1.1323 -1.2324 -1.3137 -1.3827 -1.4416 -1.4938

4 1.6667 1.7318 1.7818 1.8228 1.8574 1.8880 1.9151

-0.0001 0.0259 0.0410 0.0597 0.0722 0.0819 0.0908

0.0000 0.0087 0.0220 0.0187 0.0221 0.0252 0.0271

-0.6666 -0.7664 -0.8448 -0.9012 -0.9517 -0.9951 -1.0330

5 1.5000 1.5419 1.5750 1.6024 1.6259 1.6469 1.6655

-0.0001 0.0260 0.0414 0.0587 0.0707 0.0800 0.0884

0.0000 0.0096 0.0217 0.0209 0.0243 0.0277 0.0300

0.0000 0.0030 0.0026 0.0066 0.0079 0.0080 0.0089

-0.4999 -0.5805 -0.6407 -0.6886 -0.7288 -0.7626 -0.7928

6 1.4000 1.4268 1.4488 1.4674 1.4837 1.4986 1.5118

-0.0001 0.0259 0.0417 0.0582 0.0699 0.0788 0.0869

0.0000 0.0102 0.0215 0.0220 0.0255 0.0291 0.0316

0.0000 0.0036 0.0042 0.0079 0.0094 0.0097 0.0107

0.0001 0.0008 0.0013 0.0025 0.0023 0.0033 0.0034

-0.4000 -0.4673 -0.5175 -0.5580 -0.5908 -0.6195 -0.6444

7 1.3333 1.3493 1.3635 1.3760 1.3872 1.3978 1.4074

-0.0001 0.0257 0.0418 0.0576 0.0691 0.0779 0.0858

0.0000 0.0106 0.0215 0.0228 0.0266 0.0302 0.0326

0.0000 0.0041 0.0051 0.0087 0.0103 0.0109 0.0121

0.0001 0.0011 0.0019 0.0031 0.0033 0.0040 0.0041

-0.0001 0.0014 0.0009 0.0009 0.0010 0.0006 0.0005

-0.3332 -0.3922 -0.4347 -0.4691 -0.4975 -0.5214 -0.5425
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Table 7: Coefficients for the BLUE of σ for β = 1.5

n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

2 -1.4999 -1.3671 -1.2942 -1.2466 -1.2126 -1.1877 -1.1678

1.4999 1.3671 1.2942 1.2466 1.2126 1.1877 1.1678

3 -1.4999 -1.3824 -1.3162 -1.2729 -1.2415 -1.2181 -1.1996

0.0003 -0.0013 0.0019 -0.0058 -0.0085 -0.0103 -0.0117

0.4996 1.3837 1.3143 1.2787 1.2500 1.2284 1.2113

4 -1.4999 -1.3897 -1.3269 -1.2850 -1.2546 -1.2319 -1.2137

0.0003 -0.0014 0.0018 -0.0064 -0.0090 -0.0109 -0.0127

-0.0001 0.0069 -0.0015 0.0114 0.0119 0.0122 0.0125

1.4997 1.3842 1.3266 1.2800 1.2517 1.2306 1.2139

5 -1.4999 -1.3930 -1.3321 -1.2907 -1.2609 -1.2384 -1.2203

0.0003 -0.0021 0.0016 -0.0067 -0.0094 -0.0113 -0.0132

-0.0001 0.0072 -0.0013 0.0111 0.0120 0.0121 0.0122

0.0001 0.0073 0.0157 0.0119 0.0128 0.0138 0.0140

1.4996 1.3806 1.3161 1.2744 1.2455 1.2238 1.2073

6 -1.4999 -1.3946 -1.3343 -1.2935 -1.2638 -1.2415 -1.2236

0.0003 -0.0022 0.0012 -0.0071 -0.0098 -0.0118 -0.0134

-0.0001 0.0069 -0.0011 0.0113 0.0123 0.0123 0.0121

0.0001 0.0074 0.0154 0.0119 0.0125 0.0138 0.0141

-0.0003 0.0058 0.0087 0.0088 0.0102 0.0099 0.0101

1.4999 1.3767 1.3101 1.2686 1.2386 1.2173 1.2007

7 -1.4999 -1.3957 -1.3355 -1.2951 -1.2654 -1.2430 -1.2251

0.0003 -0.0019 0.0012 -0.0069 -0.0096 -0.0116 -0.0135

-0.0001 0.0068 -0.0014 0.0113 0.0119 0.0121 0.0121

0.0001 0.0074 0.0157 0.0119 0.0128 0.0135 0.0138

-0.0003 0.0061 0.0084 0.0088 0.0097 0.0101 0.0104

0.0005 0.0023 0.0050 0.0060 0.0065 0.0071 0.0075

1.4994 1.3750 1.3066 1.2640 1.2341 1.2118 1.1948
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The variances and covariance of the BLUE’s of µ and σ are given by (see Bal-

akrishnan and Cochen,1991)

V ar(µ∗) = σ2

{
αTΣ−1α

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2

}
= σ2V1

V ar(σ∗) = σ2

{
1TΣ−11

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2

}
= σ2V2

Cov(µ∗, σ∗) = σ2

{ −αTΣ−11

(αTΣ−1α)(1TΣ−11)− (αTΣ−11)2

}
= σ2V3

Using these results Variance and covariances of the BLUE’s of µ and σ can be

obtained in terms of σ2 and is presented in Table 8.

Example: Consider a simulated data of failure times which follow GLA2E dis-

tribution with α = δ = 1.5 and λ = 1,

1.3517, 1.8239, 0.1316, 1.18816, 0.8503, 0.1002, 0.3045, 0.6889, 2.3664, 2.4953,

0.1649, 2.6148, 2.3610, 0.5877, 1.2983, 0.1477, 0.4927, 1.9005, 1.2699, 2.3988, 0.9000,

0.0360, 1.4968, 2.0675, 0.9518, 1.1593, 1.1168, 0.4514, 0.8994, 0.1799, 1.0178, 0.0321,

0.3026, 0.0467, 0.997, 1.3860, 0.9900, 0.3524, 2.2593, 0.0348, 0.5173, 0.4368, 1.1830,

1.2803, 0.1975.

The observed upper record values are then,

1.3517, 1.8239, 1.8816, 2.3664, 2.4953, 2.6148.

With n=6, α = δ = 1.5 and λ = 1, the BLUE’s of µ andσ can be computed using

(43), (44) and Tables 6 and 7. The estimates are µ∗ = 0.7837 and σ∗ = 1.7557

The corresponding variances and covariance of µ∗ and σ∗ can be obtained from Ta-

ble 8

V ar(µ∗) = 1.4757, V ar(σ∗) = 0.9132 and Cov(µ∗σ∗) = −0.3122.

5 Confidence interval

Through the pivotal quantities

R1 =
µ∗ − µ
σ
√
V1

, R2 =
σ∗ − σ
σ
√
V2

and R3 =
µ∗ − µ
σ∗
√
V1
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Table 8: Variance and covariances of the BLUE’s of µ and σ in terms of σ2 for

β = 1.5

n δ = 1 δ = 1.5 δ = 2 δ = 2.5 δ = 3 δ = 3.5 δ = 4

2 2.6662 3.3570 3.9183 4.3993 4.8230 5.1994 5.5422

0.9998 0.9129 0.8660 0.8363 0.8157 0.8004 0.7887

-1.3330 -1.5104 -1.6437 -1.7524 -1.8447 -1.5834 -1.9931

3 1.7777 2.1912 2.5267 2.7977 3.0384 3.2512 3.4433

0.9998 0.9131 0.8666 0.8373 0.8170 0.8020 0.7904

-0.6666 -0.7636 -0.8395 -0.8945 -0.9435 -0.9854 -1.0224

4 1.4814 1.7968 2.0436 2.2490 2.4255 2.5804 2.7196

0.9998 0.9132 0.8668 0.8375 0.8173 0.8023 0.7908

-0.4444 -0.5137 -0.5651 -0.6064 -0.6408 -0.6701 -0.6960

5 1.3333 1.5968 1.8000 1.9676 2.1103 2.2351 2.3464

0.9998 0.9132 0.8668 0.8376 0.8173 0.8024 0.7909

-0.3333 -0.3880 -0.4284 -0.4608 -0.4876 -0.5106 -0.5306

6 1.2444 1.4757 1.6517 1.7952 1.9170 2.0228 2.1167

0.9998 0.9132 0.8668 0.8376 0.8173 0.8024 0.7910

-0.2666 -0.3122 -0.3457 -0.3724 -0.3946 -0.4134 -0.4299

7 1.1852 1.3939 1.5512 1.6784 1.7857 1.8786 1.9607

0.9998 0.9132 0.8668 0.8376 0.8173 0.8025 0.7910

-0.2222 -0.2612 -0.2900 -0.3128 -0.3318 -0.3479 -0.3619
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where µ∗ and σ∗ are the BLUE’s of µ and σ we construct confidence interval for the

location and scale parameters . We use R1 and R3 to construct CIs for µ when σ is

known and when σ is unknown respectively while R3 is used to construct CI’s for

σ. The construction of CI’s require the percentage points of R1, R2 and R3 which

is obtained by using the BLUE’s µ∗ and σ∗ via Monte carlo simulation based on

10000 runs and are presented in Table 9, 10 and 11 respectively.

6 Application

Now we apply the inference procedure discussed in the previous section to upper

records of simulated data sets of size n=2,3,4,5,6 and 7 (with µ = 0, σ = 1 and

β = 1.5 and δ = 2). The BLUE’s are calculated using Tables 6 and 7 and is

presented in Table 12

Using the BLUE’s given in Table 12 and the percentage points of R1 and R3 we

construct 95% confidence interval for µ when σ known and σ unknown respectively

through the formulae,

P (µ∗ − σ
√
V1R1(97.5) ≤ µ ≤ µ∗ − σ

√
V1R1(2.5)) = 95%

P (µ∗ − σ∗
√
V1R3(97.5) ≤ µ ≤ µ∗ − σ∗

√
V1R3(2.5)) = 95%

We also construct confidence interval for σ using percentage points of R2 through

the formula

P (
σ∗

1 +
√
V2R2(97.5)

≤ σ ≤ σ∗

1 +
√
V2R2(2.5)

) = 95%

The result is presented in table 13.

7 Prediction for Future Records

Prediction of future records becomes a problem of great interest. For example,while

studying the record rainfall or snowfall,having observed the record values until the
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Table 9: Simulated percentage points of R1

α n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 2 -5.6048 -4.3647 -3.6886 1.0680 1.2553 1.6490

3 -3.7185 -2.8144 -2.4643 0.6801 0.9140 1.3233

4 -2.7703 -2.1807 -1.8877 0.4046 0.6224 0.9843

5 -2.1528 -1.6737 -1.4879 0.2438 0.4602 0.7969

6 -1.8005 -1.4185 -1.2617 0.1494 0.3165 0.6166

7 -1.5893 -1.2325 -1.0969 0.0862 0.2277 0.5063

1.5 2 -5.6466 -4.3540 -3.7946 1.0855 1.2716 1.6391

3 -3.7999 -2.9755 -2.6006 0.7355 0.9606 1.3155

4 -2.8989 -2.2755 -2.0017 0.4559 0.6564 1.0353

5 -2.3951 -1.8908 -1.6573 0.2899 0.4698 0.8471

6 -1.9860 -1.5645 -1.3872 0.1933 0.3909 0.7205

7 -1.7495 -1.3776 -1.2197 0.1200 0.2753 0.5728

2 2 -5.6107 -4.3902 -3.8306 1.0717 1.2635 1.5995

3 -3.9064 -3.0607 -2.6715 0.7296 0.9569 1.3151

4 -3.1229 -2.4339 -2.1276 0.5083 0.7113 1.1249

5 -2.4654 -1.9295 -1.7106 0.3350 0.5625 0.9132

6 -2.1414 -1.6892 -1.4868 0.2611 0.4199 0.7161

7 -1.8242 -1.4775 -1.3091 0.1706 0.3485 0.6791

2.5 2 -5.8927 -4.4976 -3.8838 1.0709 1.2466 1.5387

3 -4.0531 -3.0908 -2.7025 0.7249 0.9657 1.2860

4 - 3.0235 -2.4615 -2.1567 0.5309 0.7412 1.1419

5 -2.6150 -2.0163 -1.7838 0.3883 0.5817 0.9316

6 -2.2246 -1.7543 -1.5669 0.2762 0.4315 0.7423

7 -1.9673 -1.5583 -1.3835 0.1807 0.3479 0.6522

3 2 -5.8003 -4.4627 -3.9436 1.0356 1.2033 1.5224

3 -4.1028 -3.2689 -2.8776 0.7613 0.9902 1.3394

4 -3.1483 -2.5294 -2.2474 0.5344 0.7431 1.1134

5 -2.6157 -2.0956 -1.8573 0.3815 0.5995 0.9595

6 -2.3164 -1.8209 -1.5990 0.3059 0.4818 0.7932

7 -1.9585 -1.5881 -1.4197 0.2162 0.3862 0.7111

3.5 2 -6.2370 -4.6718 -4.0112 1.0674 1.2328 1.5462

3 -4.1166 -3.1950 -2.8594 0.7699 1.0098 1.3219

4 -3.2041 -2.5486 -2.2757 0.5444 0.7572 1.1057

5 -2.7375 -2.1398 -1.9060 0.3761 0.6090 0.9719

6 -2.4066 -1.8791 -1.6463 0.3256 0.5062 0.8187

7 -2.0798 -1.6544 -1.4697 0.2469 0.4224 0.7090

4 2 -6.0906 -4.6749 -4.0870 1.0676 1.2242 1.4689

3 -4.2192 -3.2277 -2.8414 0.7766 0.9953 1.3071

4 -3.2869 -2.6134 -2.3116 0.5683 0.7820 1.1489

5 -2.7192 -2.1562 -1.9143 0.4332 0.6245 0.9703

6 -2.3595 -1.9166 -1.7047 0.3404 0.5247 0.8608

7 -2.1023 -1.6707 -1.4857 0.2233 0.4076 0.7151
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Table 10: Simulated percentage points of R2

α n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 2 -0.9838 -0.8978 -0.8094 3.9539 4.6854 6.2236

3 -2.9830 -2.5203 -2.2619 0.5187 0.7560 1.3453

4 -0.3644 0.0518 0.3188 4.7602 5.5493 7.2161

5 -0.1531 0.3424 0.5932 4.8116 5.4976 7.0743

6 0.1207 0.5766 0.8148 4.9689 5.5365 7.2471

7 0.2645 0.6930 0.9076 5.0563 5.7481 7.4083

1.5 2 -1.0320 -0.9571 -0.8635 3.8172 4.5124 6.0503

3 -0.7996 -0.4741 -0.2231 4.4816 5.1672 6.6805

4 -0.4557 0.0145 0.2936 4.7694 5.4141 6.9187

5 -0.1041 0.3609 0.6511 4.9347 5.6011 7.2818

6 0.0580 0.5663 0.8464 4.9561 5.6505 7.0729

7 0.3164 0.7543 1.0037 5. 0623 5.7650 7.2539

2 2 -1.0522 -0.9774 -0.8833 3.7763 4.4201 5.9488

3 -0.8191 -0.4983 -0.2563 4.4266 5.1720 6.7478

4 -0.4811 -0.0344 0.2837 4.7767 5.4815 7.1890

5 -0.1934 0.3373 0.6073 4.8510 5.4855 6.9931

6 0.1243 0.5631 0.8653 5.0114 5.6598 7.2408

7 0.3080 0.7478 1.0209 5.0818 5.7963 7.2729

2.5 2 -1.0761 -1.0034 -0.9050 3.7554 4.4691 5.9813

3 -0.8322 -0.4708 -0.2281 4.4342 5.0509 6.7658

4 -0.4872 -0.0288 0.2877 4.7682 5.4150 6.7047

5 -0.1494 0.3359 0.6389 4.8793 0.5533 7.1673

6 0.1229 0.5822 0.8625 5.0375 5.6685 7.1661

7 0.3350 0.8027 1.0718 5.1550 5.7967 7.2462

3 2 -1.0899 -1.0018 -0.9140 3.7177 4.3137 5.6924

3 -0.8224 -0.5342 -0.2882 4.5343 5.2340 6.6902

4 -0.4637 -0.0462 0.2718 4.8124 5.4531 6.8974

5 -0.1437 0.3301 0.6146 4.9329 5.5515 6.8813

6 0.1154 0.5954 0.8826 5.0871 5.7683 7.1481

7 0.3127 0.8421 1.1048 5.1286 5.7708 7.2325

3.5 2 -1.1011 -1.0315 -0.9306 3.7736 4.4235 6.1671

3 -0.8570 -0.5157 -0.2688 4.4775 5.0794 6.6519

4 -0.4731 -0.0485 0.2204 4.7681 5.3593 6.8074

5 -0.1657 0.3277 0.6398 4.9728 5.6169 7.1989

6 0.1388 0.5945 0.9078 5.0823 5.7973 7.4037

7 0.2979 0.8223 1.0760 5.2012 5.8126 7.2913

4 2 -1.1098 -1.0405 -0.9559 3.7920 4.4534 5.8867

3 -0.8337 -0.5448 -0.3060 4.3638 5.0319 6.5454

4 -0.5067 -0.0460 0.2424 4.7966 5.4323 6.8444

5 -0.1765 0.3169 0.6245 4.9266 5.5686 6.9046

6 0.0889 0.5909 0.8859 5.2025 5.8539 7.2088

7 0.3425 0.8379 1.1365 5.1715 5.8387 7.3866
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Table 11: Simulated percentage points of R3

δ n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 2 -0.8146 -0.8057 -0.7950 5.2623 11.2520 77.3761

3 -37.8845 -9.6445 -5.5812 3.5601 7.8030 47.7056

4 -0.3645 -0.3616 -0.3579 0.2737 0.5256 1.3984

5 -0.2881 -0.2860 -0.2830 0.1349 0.2979 0.7678

6 -0.2387 -0.2369 -0.2346 0.0748 0.1703 0.4544

7 -0.2038 -0.2024 -0.2007 0.0370 0.1095 0.3074

1.5 2 -0.8807 -0.8699 -0.8565 6.1249 13.1325 83.0720

3 -0.5461 -0.5394 -0.5315 0.9181 1.5644 4.7084

4 -0.4058 -0.3999 -0.3950 0.3298 0.6046 1.5776

5 -0.3256 -0.3208 -0.3167 0.1638 0.3204 0.8235

6 -0.2733 -0.2694 -0.2660 0.0971 0.2207 0.5773

7 -0.2361 -0.2329 -0.2300 0.0541 0.1424 0.3666

2 2 -0.9223 -0.9085 -0.8927 5.9957 13.1293 60.6882

3 -0.5813 -0.5706 -0.5608 0.9346 1.6818 4.6838

4 -0.4348 -0.4260 -0.4183 0.3842 0.6907 1.8459

5 -0.3518 -0.3445 -0.3390 0.1945 0.3876 0.9591

6 -0.2979 -0.2919 -0.2872 0.1323 0.2514 0.5490

7 -0.2581 -0.2535 -0.2494 0.0802 0.1820 0.4667

2.5 2 -0.9554 -0.9397 -0.9209 6.1792 13.6103 75.7308

3 -0.6022 -0.5899 -0.5798 0.8775 1.6191 4.5777

4 -0.4548 -0.4452 -0.4372 0.3880 0.7019 1.8229

5 -0.3713 -0.3627 -0.3562 0.2331 0.4065 0.9663

6 -0.3147 -0.3076 -0.3025 0.1400 0.2609 0.5943

7 -0.2746 -0.2689 -0.2637 0.0834 0.1789 0.4137

3 2 -0.9783 -0.9606 -0.9432 5.8539 12.0516 76.3009

3 -0.6211 -0.6079 -0.5967 1.0201 1.8443 4.7492

4 -0.4718 -0.4613 -0.4512 0.4103 0.7234 1.6753

5 -0.3866 -0.3764 -0.3692 0.2218 0.4409 1.0340

6 -0.3283 -0.3202 -0.3138 0.1571 0.2892 0.6496

7 -0.2876 -0.2798 -0.2747 0.0984 0.2001 0.4665

3.5 2 -0.9980 -0.9826 -0.9621 6.2831 14.5647 81.5251

3 -0.6344 -0.6206 -0.6077 1.0010 1.7926 5.1915

4 -0.4847 -0.4722 -0.4620 0.4342 0.7484 1.6421

5 -0.3979 -0.3857 -0.3772 0.2309 0.4296 1.0322

6 -0.3406 -0.3294 -0.3225 0.1691 0.3040 0.6460

7 -0.2978 -0.2889 -0.2825 0.1156 0.2176 0.4955

4 2 -1.0122 -0.9956 -0.9728 6.8918 14.7036 88.2247

3 -0.9834 -0.9309 -0.892 3.7529 5.8408 16.5728

4 -0.4957 -0.4807 -0.4700 0.4514 0.7983 1.8950

5 -0.4077 -0.3955 -0.3852 0.2694 0.4615 1.0219

6 -0.3482 -0.3387 -0.3304 0.1817 0.3238 0.6890

7 -0.3047 -0.2967 -0.2904 0.1033 0.2164 0.5076
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Table 12: Upper Record values and BLUE’s of µ and σ forβ = 1.5andδ = 2

n Upper record values µ∗ σ∗

2 1.2920,2.7607 -2.1947 1.9008

3 1.0013,2.2525,2.6529 -0.9837 2.1731

4 1.0193,1.3935,2.1698,3.6395 -1.1536 3.4749

5 0.6795,1.2172,1.6170,3.6803,4.9475 -2.0046 5.6639

6 0.1976,0.2757,0.3639,1.4029,2.3866,2.8864 -1.1791 3.5601

7 1.1294,1.2049,1.4899,1.6223,2.9092,3.0884,3.1585 0.2659 2.6833

Table 13: 95% Confidence interval for µ and σ

n 2 3 4 5 6 7

95%CI forµ (-4.6958,6.4957) (-2.5048,5.2259) (-2.1704,2.3257) (-2.7593,0.5840) (-1.7188,0.9919) (-0.1682, 2.1061)

(σ known)

95%CI forµ (-51.5954,1.2237) (-6.7932,0.9874) (-4.5846,0.9625) (-4.9499,0.6131) (-2.3294,0.1565) (-0.3424,1.1285)

(σ unknown)

95%CI forσ (0.3717,21.0192) (0.3737,4.0533) (0.5693,3.5899) (0.9274,4.3103) (0.5679,2.3356) (0.4195,1.5819)



60 Journal of the Kerala Statistical Association

Table 14: Predicted records

n simulated records of size (n-1) Predicted value

3 2.3061,3.0550 3.5364

4 1.3610,1.4101,2.0967 4.1160

5 0.8188,1.2812,1.3946,2.2052 7.8762

6 0.3431,0.3987,0.9604,1.5604,3.1596 17.6655

7 0.9136,0.9301,1.1862,1.4686,2.2000,2.6492 13.3136

8 1.1294,1.2049,1.4899,1.6223,2.9092,3.0884,3.1585 17.6038

present time, we will be naturally interested in predicting the amount of rainfall

or snowfall to be expected when the present record is broken for the first time in

future. The best linear unbiased predicted value of the next record can be written

as (see Balakrishnan and Chan, 1998).

yu(n) = µ∗ + σ∗βn

where µ∗ andσ∗ are the BLUE’s based on the first (n-1) records and αn is the

nth moment of record values. Prediction of next upper record value is obtained from

a simulated data and presented in Table 14.

8 Entropy of Record value distribution

Entropy provides an excellent tool to quantify the amount of information (or uncer-

tainty) contained in a random observation regarding its parent distribution. Shan-

non’s(1948) entropy of an absolutely continuous random variable X with probability

density function f(x) is given by

Hx[f(x)] = −
∫ ∞

−∞
f(x)ln[f(x)]dx

The entropy is always non-negative in the case of a discrete random variable X and

is also invariant under one-to- one transformation of X. For a continuous random

variable, entropy is not invariant under one-to-one transformation of X and it takes
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values in (−∞,+∞) .The entropy for some commonly used probability distribu-

tions have been tabulated by many authors. More recently Ebrahmi et al (2004)

have explored the properties of entropy, Kullback - Leibler information and mutual

information for order statistics. Now we discuss the entropy for the record values

of GLA2E (δ, λ). LetH(Rn) be the entropy of the nth record value. Then by Shakil

(2005)

H(Rn) = ln(Γn)− (n− 1)ψ(n)− 1

Γ(n)

∫ ∞

−∞
[− ln(1−G(x))]n−1g(x) ln(g(x))dx (45)

where
∫∞

0 tj−1e−tdt = Γ(j) and
∫∞

0 tj−1e−tln(t)dt = Γ(j)ψ(j) ψ(j) is the digamma

function.

For n = 1 entropy of the first record value is same as the entropy of parent

distribution. Comparison of the entropy of parent distribution and nth record value

for n ≥ 2 is same as comparison of entropy of first record value with entropy of a

given nth record value. Since the first observation from the parent distribution is

always considered as a record value, entropy of the first non-trivial record value is

obtained when n ≥ 2.

Theorem 8.1. For GLA2E (δ, β, λ) distribution if H(j) represents the entropy cor-

responding to jth record, then

H(j) = ln(Γj)− (j − 1)ψ(j) + j − ln(σ) +
∞∑

i=1

ki

i(i+ 1)j
(46)

Proof By (45) the entropy of jth record for GLA2E (δ, β, λ) is

H(j) = ln(Γj)− (j − 1)ψ(j)− 1

Γ(j)

∫ ∞

0

[
− ln

(
δ

eβλx − δ

)]j−1

v(x) ln v(x) dx

where v(x) = δλeβλx

(eβλx−λ)2
. By the transformation t = − ln δ

eβλx−δ and writing

ln(1−ke−t) = −∑∞i=1
kie−it
i where k = 1− 1

α the result (42) can be easily obtained.
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Table 15: Entropy of GLA2E (δ, β, λ)

Record λ = 0.5 λ = 1 λ = 2 λ = 3

2 1.6561 0.9630 0.2698 -0.1356

3 2.0250 1.3318 0.6387 0.2332

4 2.2538 1.5606 0.8675 0.4620

5 2.4118 1.7187 1.0255 0.6200

6 2.5296 1.8364 1.1433 0.7378

7 2.6226 1.9295 1.2363 0.8309

Using (46) the entropy of GLA2E (δ, β, λ) for δ = β = 1.5 and for various record

values and various values of λ are tabulated and presented in Table 15.

9 Conclusion

In this paper, a new family of distributions called Generalized Lehmann Alternative

Type II family of distributions is introduced and explored the statistical properties

such as probability density function (pdf), hazard rate function (hrf), expressions

for cumulative distribution function (cdf), quantile and survival function. Maxi-

mum Likelihood function is obtained for estimation of unknown parameters of the

new family of distributions. Different special models which include Uniform, Ku-

maraswamy models are developed for this new family. The probability density func-

tion (pdf), cumulative distribution function (cdf) and hazard rate function (hrf) are

obtained and plotted the density function for different parameter values. A special

model of this family called Generalized Lehmann Alternative Type II Exponential

distribution is introduced and studied in detail. The statistical properties such as

probability density function (pdf), hazard rate function (hrf), expressions for cu-

mulative distribution function (cdf), quantile and survival function are obtained.

The shapes of the density function and hazard rate function are plotted for different

parameter values. Method of maximum likelihood estimation is used for estimation

of unknown parameters of the new distribution. The new distribution is applied to

a real data set to show the effectiveness of the distribution and it is verified that
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the new model is a better model than the existing exponential model and Marshall-

Olkin extended exponential model. A detailed study on the record value theory

associated with Generalized Lehmann Alternative Type II Exponential distribution

is conducted. Using the mean, variance and covariance of upper record values of the

extended model, BLUE’s of location and scale parameters are obtained and future

records are predicted which has a number of practical uses. The 95% confidence

interval for location and scale parameters are also computed. MATLAB programs

are developed for this purpose. The result is applied to a real data set to validate

the results. Entropy of record values is derived. This result will be useful in char-

acterization of record values based on entropies and a quantification of information

contained in each additional record value based on entropy measure.
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