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ABSTRACT

The past entropy function, introduced by Di Crescenzo and Longobardi

(2002), is viewed as a dynamic measure of uncertainty in past life. This mea-

sure find applications in modeling life time data. In the present work we provide

non-parametric kernel type estimators for the past entropy function based on

complete and censored data. Asymptotic properties of the estimators are es-

tablished under suitable regularity conditions. Monte-Carlo simulation studies

are carried out to compare the performance of the estimators using the mean-

squared error. The methods are illustrated using real data sets.
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1 Introduction

Recently, many researchers have shown a keen interest in the measurement of un-

certainty associated with a probability distribution of particular interest in proba-

bility and statistics is the notion of entropy, introduced by Shannon (1948). If X

is a random variable having an absolutely continuous distribution function F with
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probability density function f , then the entropy of the random variable X is defined

as

H(X) = H(f) = −
∞∫

0

f(x) log f(x)dx. (1.1)

If we consider X as the lifetime of a new unit then H(f) can be viewed as a useful

tool for measuring the associated uncertainty. Ebrahimi and Pellerey (1995) and

Ebrahimi (1996) have introduced the concept of residual entropy in terms of a con-

ditional measure. For a non-negative random variable X, representing the life time

of a component, the residual entropy function is the Shannon’s entropy associated

with the random variable X given X > t, and is defined as

H(f ; t) = −
∞∫

t

f(x)

F (t)
log

f(x)

F (t)
dx

= 1− 1

F (t)

∞∫

t

f(x) log h(x)dx, F (t) > 0,

(1.2)

where F (t) = P (X > t) denotes the survival function and h(x) = f(x)

F (x)
is the hazard

function of X. Belzunce et al. (2004) have established that if H(f ; t) is increasing in

t then H(f ; t) determines the distribution uniquely. Given that an item has survived

up to time t, H(f ; t) measures the uncertainty in its remaining life. For a discus-

sion of the properties and applications of residual entropy we refer to Ebrahimi and

Kirmani (1996), Nair and Rajesh (1998) and Asadi and Ebrahimi (2000).

It is reasonable to presume that in many realistic situations uncertainty is not nec-

essarily related to the future but can also refer to the past. For instance, consider

a system whose state is observed only at certain preassigned inspection times. If at

time t, the system is inspected for the first time and it is found to be ‘down’, then

the uncertainty relies on the past, i.e. on which instant in (0, t) it has failed. It

thus seems natural to introduce a notion of uncertainty that is dual to the residual

entropy, in the sense that it refers to past time and not to future time. Based on this

idea Di Crescenzo and Longobardi (2002) have studied the past entropy. Further,

they discussed the necessity of the past entropy, its relation with residual entropy

and many interesting results. In Di Crescenzo and Longobardi (2004) a measure of
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discrimination based on past entropy has been studied. If X denotes the lifetime of

a component/system or of living organism, then the past entropy of X at time t is

defined as

H(f ; t) = −
t∫

0

f(x)

F (t)
log

f(x)

F (t)
dx

= 1− 1

F (t)

t∫

0

f(x) log T (x) dx,

(1.3)

where T (x) = f(x)
F (x) is the reversed hazard rate of x.

It can also be used in Forensic Sciences where exact time of failure (death in case

of human being) is important when at some time t the unit is found to be in failure

state. Gupta and Nanda (2002) have defined generalized uncertainty of lifetime

distribution by truncating the distributions above some point t. Nanda and Paul

(2006) have studied some properties and applications of past entropy. Gupta (2009)

established that the past entropy determines the distribution uniquely, under certain

conditions.

To make valid decisions regarding the extent of uncertainty in past data, one requires

a reasonable estimate of the past entropy. Motivated by this in the present paper

we provide nonparametric estimators for H(f ; t) using kernel type estimation for

complete as well as censored data. We consider only situations where the data under

study are dependent. In both situations, the underlying lifetimes are assumed to be

α-mixing (see, Rosenblatt (1956)).

Definition 1.

Let {Xi; i ≥ 1} denote a sequence of random variables. Given a positive integer n,

set

α(n) = sup
k≥1

{|P (A ∩B)− P (A)P (B)|;AεFk1, BεF∞
k+n (1.4)

where Fki denote the σ- field of events generated by {Xj ; i ≤ j ≤ k}. The sequence

is said to be α-mixing (strong mixing) if the mixing coefficient α(n) → 0 as n →
∞. Among various mixing conditions, α-mixing is reasonably weak and has many

practical applications.
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The rest of the paper is organized as follows. In Section 2, we present estimators

for H(f ; t), given in (1.3), using complete and censored samples. In Section 3, we

examine the consistency and asymptotic normality of the estimators. In Section 4,

we evaluate the estimators for real data sets and in Section 5 a simulation study to

illustrate the behavior of the estimators is undertaken.

2 Estimation

In this section, we propose nonparametric estimators for the past entropy function

for complete as well as censored data sets.

2.1 Complete Samples

Let {Xi; 1 ≤ i ≤ n} be a sequence of identically distributed random variables. Note

that Xi
′s need not be mutually independent. A simple nonparametric estimator of

H(f ; t) is given as

H
∗
(f ; t) =

−1

n

n∑

i=1

log

(
fn(Xi)

Fn(t)

)
I(Xi≤t), (2.1)

where fn(Xi) = 1
(n−1)

n∑
j 6=i

1
bn
K
(
Xi−Xj

bn

)
is the kernel estimator obtained from the

sample without Xi, Fn(t) is either an empirical or a kernel estimator for the distri-

bution function and

I(Xi≤t) =




1, if Xi ≤ t

0, otherwise.

A kernel estimator of H(f ; t) for the above sample is defined as

Hn(f ; t) = −
t∫

0

fn(x)

Fn(t)
log

fn(x)

Fn(t)
dx. (2.2)

(2.2) can also be written as

Hn(f ; t) = logFn(t)−
1

Fn(t)

t∫

0

fn(x) log fn(x)dx, (2.3)
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where fn(x) is a nonparametric estimator of f(x) and Fn(t) =
t∫
0

fn(x) dx is a

nonparametric estimator of distribution function F (t).

The most common nonparametric density estimator of f(x) is the kernel estimator

given by (see, Parzen (1962), Rosenblatt (1970))

fn(x) =
1

nbn

n∑

j=1

K

(
x−Xj

bn

)
, (2.4)

where K(x) is a kernel of order s with compact support satisfying the conditions

i) K(x) ≥ 0 for all x

ii)
∫
K(x) dx = 1

iii) K(.) is symmetric about zero

iv) Kn(x) = 1
bn
K( xbn ) where {bn} is a bandwidth sequence of positive numbers

such that bn → 0 and nbn → ∞ as n→ ∞ and

v) K(.) satisfies Lipschitz condition, namely there exist a constant M such that

|K(x)−K(y)| ≤M |x− y|.

Under α-mixing dependence conditions, expressions for the bias and variance of

fn(x) are

Bias (fn(x)) w
bsncs
s!

f (s)(x) (2.5)

and

V ar (fn(x)) w
1

nbn
f(x)CK , (2.6)
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where cs =
∞∫

−∞
usK(u) du and CK =

∞∫
−∞

K2(u) du.

2.2 Censored Samples

In reliability and life testing, due to time constraints or cost considerations the ex-

perimenter is forced to terminate the experiment after a specific period of time or

after the failure of a specified number of units. In this context the underlying data

will be censored. In the context of right censoring only, the lower bounds on life time

will be available for some individuals and in the context of left censoring data will

be recorded as the upper bound of life time for some individuals. Another common

type of censoring is random censoring.

Let {Xi; 1 ≤ i ≤ n} be a sequence of non-negative random variables representing the

life times for n components/devices. The random variables are not assumed to be

mutually independent. However they have a common unknown continuous marginal

distribution function F (x) with a probability density function f(x) = F
′
(x). Let

the random variable Xi be censored on the right by the random variable Yi. In this

random censorship model, the censoring times Yi are assumed to be independently

and identically distributed and they are also assumed to be independent of Xi. The

censoring times Y1, Y2, ..., Yn have the common distribution function P (y). This

scheme is very common in clinical trials. In such experiments, patients enter into

the study at random time points, while the experiment itself is terminated at a

prespecified time. Let Zi = min(Xi, Yi) and δi = I(Xi ≤ Yi), where I(.) denotes

the indicator function of the event specified in parentheses. The actually observed

Z ′
is have a distribution function G satisfying

1−G(t) = (1− F (t))(1− P (t)), t εR+ = [0,∞).

Let G∗(t) = P (Z1 ≤ t; δ1 = 1) is the corresponding sub-distribution function for

the uncensored observations and g∗(t) = f(t)(1 − P (t)) be the corresponding sub-

density. A reasonable estimator of f should behave like g∗n(t)
(1−P (t)) where g∗n(t) =
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b−1
n

∫
R+

K( t−xbn ) dG∗
n(x) is the kernel estimator pertaining toG∗

n(t) =
1
n

n∑
i=1

I(Zi ≤ t; δi = 1).

A nonparametric estimator for H(f ; t) based on the censored data is

H
n
∗ (f ; t) =

−1

n

n∑

i=1

log

(
fn(Zi)

F ∗
n(t)

)
I(Zi≤t), (2.7)

where fn(Zi) = 1
(n−1)

n∑
j 6=i

1
bn
K
(
Zi−Zj

bn

)
is the kernel estimator obtained from the

sample without Zi and F
∗
n(t) is a kernel estimator for the distribution function.

A non parametric estimator for past entropy function under α− mixing condition,

in the random censorship model, is defined as

H
∗
n(f ; t) = logF ∗

n(t)−
1

F ∗
n(t)

t∫

0

f∗n(x) log f
∗
n(x)dx, (2.8)

where

f∗n(t) =
1

bn

∫

R+

K( t−xbn )

1− P (x)
dG∗

n(x), (2.9)

is a nonparametric density estimator for f(x) under censoring (see, Cai (1998)),

F ∗
n(t) =

t∫
0

f∗n(u) du, K(x) is a kernel of order s with compact support which satisfies

the conditions (i)-(v) in Section 2.1 and {bn} is a sequence of real numbers such

that bn → 0 and nbn → ∞ as n→ ∞.

Under α-mixing dependence conditions, expressions for the bias and variance of

f∗n(t) are given by (see, Cai (1998))

Bias (f∗n(t)) w
bsncs+

s!
f (s)(t) (2.10)

and

V ar (f∗n(t)) w
1

nbn

f(t)

(1− P (t))
CK , (2.11)

where cs+ =
∫
R+

usK(u) du and CK =
∞∫

−∞
K2(u) du.
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3 Asymptotic properties

In this section, we look in to the consistency and asymptotic normality of the esti-

mators (2.3) and (2.8). In order to simplify the notations, define

Vn(t) = logFn(t), V
∗
n (t) = logF ∗

n(t), V (t) = logF (t),

An(t) =
t∫
0

fn(x) log fn(x)dx, A
∗
n(t) =

t∫
0

f∗n(x) log f
∗
n(x)dx

and A(t) =
t∫
0

f(x) log f(x)dx.

Theorem 3.1. Let K(x) be a kernel of order s with compact support satisfying

the conditions (i)-(v) in Section 2 and {bn} be such that bn → 0 and nbn → ∞ as

n→ ∞. Then

a) Hn(f ; t) is a consistent estimator of H(f ; t).

b) H
∗
n(f ; t) is a consistent estimator of H(f ; t).

Proof. a) Under α-mixing dependence conditions, we obtain the expressions for the

bias and the variance of Fn(t), Vn(t) and An(t) and are given by

Bias (Fn(t)) w
bsncs
s!

t∫

0

f (s)(x) dx, (3.1)

V ar (Fn(t)) w
CK
nbn

F (t), (3.2)

Bias (Vn(t)) w
bsncs
s!F (t)

t∫

0

f (s)(x) dx, (3.3)

V ar (Vn(t)) w
1

nbn

Ck
F (t)

, (3.4)

Bias(An(t)) w
(
bsn
s!
cs

) t∫

0

(1 + logf(x))f (s)(x)dx (3.5)
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and

V ar(An(t)) w
(

1

nbn
Ck

) t∫

0

(1 + log f(x))2f(x)dx. (3.6)

The corresponding MSE’s are given by

MSE (Fn(t)) w


b

s
ncs
s!

t∫

0

f (s)(x) dx




2

+
CK
nbn

F (t), (3.7)

MSE (Vn(t)) w


 bsncs
s!F (t)

t∫

0

f (s)(x) dx




2

+
1

nbn

Ck
F (t)

(3.8)

and

MSE (An(t)) w



(
bsn
s!
cs

) t∫

0

(1 + logf(x))f (s)(x)dx




2

+

(
1

nbn
Ck

) t∫

0

(1 + log f(x))2f(x)dx.

(3.9)

From (3.7), as n→ ∞
MSE (Fn(t)) → 0.

From (3.8), as n→ ∞
MSE (Vn(t)) → 0.

From (3.9), as n→ ∞
MSE (An(t)) → 0.

Therefore

Hn(f ; t) = Vn(t)−
An(t)

Fn(t)

p→V (t)− A(t)

F (t)
= H(f ; t).

That is, Hn(f ; t)is a consistent estimator of H(f ; t).

b) Under α-mixing dependence conditions, we obtain the expressions for the bias

and the variance of F ∗
n(t), V

∗
n (t) and A

∗
n(t) and are given by

Bias (F ∗
n(t)) w

bsncs+

s!

t∫

0

f (s)(u) du, (3.10)
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V ar (F ∗
n(t)) w

1

nbn
CK

t∫

0

f(u)

[1− P (u)]
du, (3.11)

Bias (V ∗
n (t)) w

bsn
s!

cs+

F (t)

t∫

0

f (s)(u) du, (3.12)

V ar (V ∗
n (t)) w

1

nbn

Ck
F 2(t)

t∫

0

f(u)

[1− P (u)]
du, (3.13)

Bias(A∗
n(t)) w

(
bsn
s!
c+s

) t∫

0

(1 + logf(u))f (s)(u)du (3.14)

and

V ar(A∗
n(t)) w

(
1

nbn
Ck

) t∫

0

(1 + log f(u))2
f(u)

[1− P (u)]
du. (3.15)

The corresponding MSE’s are given by

MSE (F ∗
n(t)) w


b

s
ncs+

s!

t∫

0

f (s)(u) du




2

+
1

nbn
CK

t∫

0

f(u)

[1− P (u)]
du, (3.16)

MSE (V ∗
n (t)) w


b

s
n

s!

cs+

F (t)

t∫

0

f (s)(u) du




2

+
1

nbn

Ck
F 2(t)

t∫

0

f(u)

[1− P (u)]
du (3.17)

and

MSE (A∗
n(t)) w



(
bsn
s!
c+s

) t∫

0

(1 + logf(u))f (s)(u)du




2

+

(
1

nbn
Ck

) t∫

0

(1 + log f(u))2
f(u)

[1− P (u)]
du.

(3.18)

From (3.16), as n→ ∞
MSE (F ∗

n(t)) → 0.
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From (3.17), as n→ ∞
MSE (V ∗

n (t)) → 0.

From (3.18), as n→ ∞
MSE (A∗

n(t)) → 0.

Therefore

H
∗
n(f ; t) = V ∗

n (t)−
A∗
n(t)

F ∗
n(t)

p→V (t)− A(t)

F (t)
= H(f ; t).

That is, H
∗
n(f ; t) is a consistent estimator of H(f ; t).

If gn(x) is an estimator for g(x), then its MISE (Integrated mean-squared error) is

given by:

MISE (gn(x)) = E





∞∫

−∞

(gn(x)− g(x))2w(t)dF (t)



 ,

where w(.) is a weight function.

In the following theorem, we give expressions for the MISE of Hn(f ; t) and H
∗
n(f ; t)

as n→ ∞.

Theorem 3.2. Let K(x) be a kernel of order s with compact support satisfying the

conditions (i)-(v) in Section 2 and {bn} satisfying the conditions given in Section 2.

Then

a) lim
n→∞

MISE
(
Hn(f ; t)

)
= 0.

b) lim
n→∞

MISE
(
H

∗
n(f ; t)

)
= 0.

Proof.

MISE
(
Hn(f ; t)

)
= E





∞∫

−∞

(
Hn(f ; t)−H(f ; t)

)2
w(t)dF (t)



 . (3.19)

= E





∞∫

−∞

[
(Vn(t)− V (t))−

(
An(t)

Fn(t)
− A(t)

F (t)

)]2
w(t)dF (t)







Kernel estimation of past entropy function 23

= E





∞∫

−∞

(Vn(t)− V (t))2w(t)dF (t)





+ E





∞∫

−∞

(
An(t)

Fn(t)
− A(t)

F (t)

)2

w(t)dF (t)





− 2E





∞∫

−∞

(Vn(t)− V (t))

(
An(t)

Fn(t)
− A(t)

F (t)

)
w(t)dF (t)



 .

Let H1, H2 and H3 are given by

H1 = E





∞∫

−∞

(Vn(t)− V (t))2w(t)dF (t)





=

∞∫

−∞

[
V ar(Vn(t)) +Bias2(Vn(t))

]
w(t)dF (t).

H2 = E





∞∫

−∞

(
An(t)

Fn(t)
− A(t)

F (t)

)2

w(t)dF (t)



 .

Using the approximation An(t)
Fn(t)

− A(t)
F (t) =

An(t)−Fn(t)
A(t)
F (t)

F (t) (1 + op(1)), the above equa-

tion simplifies to

H2 = E





∞∫

−∞


An(t)− Fn(t)

A(t)
F (t)

F (t)




2

w(t)dF (t)



 .

Using Holder inequality, we get

H2 ≤
∞∫

−∞

{
V ar (An(t)) + [E (An(t))]

2
} w(t)

F 2(t)
dF (t)

+

∞∫

−∞

{
V ar (Fn(t))

A2(t)

F 2(t)
+ [E (Fn(t))]

2 A
2(t)

F 2(t)

}
w(t)

F 2(t)
dF (t)

− 2

∞∫

−∞

A(t)

F (t)

[
E (An(t))

2
] 1

2
[
E (Fn(t))

2
] 1

2 w(t)

F 2(t)
dF (t).

H3 = 2E





∞∫

−∞

(Vn(t)− V (t))

(
An(t)

Fn(t)
− A(t)

F (t)

)
w(t)dF (t)




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≤ 2

∞∫

−∞

[
E (Vn(t)− V (t))2

] 1
2

[
E

(
An(t)

Fn(t)
− A(t)

F (t)

)2
] 1

2

w(t)dF (t).

From (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6), it follows that

MISE
(
Hn(f ; t)

)
→ o as n→ ∞. (3.20)

b) The proof is similar to that of a).

In the following theorem, we focus attention on the asymptotic normality of the

estimators Hn(f ; t) and H
∗
n(f ; t).

Theorem 3.3. Suppose that F be continuous. Assume that K(.) satisfies the as-

sumptions (i)-(v) of Section 2 . Then

a) (nbn)
1
2

{
(Hn(f ; t)−H(f ; t))

σH

}
(3.21)

has a standard normal distribution as n→ ∞ with

σ2
H

w Ck
nbnF 2(t)

t∫
0

f(x)
[
A2(t)
F 2(t)

+ 1 + (1 + log f(x))2
]
dx.

b) (nbn)
1
2

{
(H

∗
n(f ; t)−H(f ; t))

σH∗

}
(3.22)

has a standard normal distribution as n→ ∞ with

σ2
H

∗ w Ck
nbnF 2(t)

t∫
0

f(x)
1−P (x)

[
A2(t)
F 2(t)

+ 1 + (1 + log f(x))2
]
dx.

Proof. a)
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√
nbn

(
Hn(f ; t)−H(f ; t)

)

=
√
nbn

[
(Vn(t)− V (t))−

[
An(t)

Fn(t)
− A(t)

F (t)

]]

w
√
nbn

[(
Fn(t)− F (t)

F (t)

)
−
(
An(t)F (t)−A(t)Fn(t)

Fn(t)F (t)

)]

=
√
nbn

[
(Fn(t)− F (t))

F (t)
− F (t) [An(t)−A(t)]

Fn(t)F (t)

]

−
√
nbn

[
A(t) [Fn(t)− F (t)]

Fn(t)F (t)

]
.

(3.23)

Since supt |Fn(t)− F (t)| → 0 a.s., (3.23) is asymptotically equal to

√
nbn

(
Hn(f ; t)−H(f ; t)

)

w
√
nbn

[
1

F (t)
− A(t)

F 2(t)

]
(Fn(t)− F (t))

−
√
nbn

(
An(t)−A(t)

F (t)

)

w
√
nbn

[
1

F (t)
− A(t)

F 2(t)

] t∫

0

(fn(u)− f(u)) du

−
√
nbn
F (t)

t∫

0

(fn(u)− f(u)) (1 + log f(u)) du

(3.24)

Note that from Parzen (1962),
√
nbn (fn(x)− f(x)) is asymptotically normal with

mean zero and variance σ2f given in (2.6).

Now from (3.24), it is immediate that

(nbn)
1
2

{
(Hn(f ; t)−H(f ; t))

σH

}
(3.25)

is asymptotically normal with mean zero. The expression of variance can be obtained

from (3.2), (3.4) and (3.6).

b) The proof is similar to that of a).
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4 Numerical illustration

Example 4.1.

To illustrate the usefulness of the proposed estimator discussed in Section2.1 with

real situations, we consider the times, in months, to the first failure of 20 electric

carts used for internal delivery and transportation in a large manufacturing facility

(see, Zimmer et al (1998)). We use the bootstrapping procedure to find optimum

value of bn (see, Efron (1981)). The Gaussian kernel K(z) = 1√
2π

exp
(
−z2
2

)
is used

as the kernel function for the estimation. At each value of t and bn we calculate the

biases and the mean-squared errors of Hn(f ; t) using 250 bootstrap samples of size

20. Table 1 presents the bootstrap estimates of the biases and the mean-squared

errors, in brackets, for Hn(f ; t). From the Table 1 it can be seen that the optimum

value of bn is 0.2 for 0.9 < t ≤ 12.6, 0.3 for 12.6 < t ≤ 16.3, 0.4 for 16.3 < t ≤ 19.3,

0.6 for 19.3 < t ≤ 22.6, 0.7 for 22.6 < t ≤ 24.8 and 0.9 for 24.8 < t ≤ 53. In Figure

1 dark line represents the theoretical value H(f ; t) and starred line represents the

estimator Hn(f ; t). From Figure 1, it is easy to see that for the data set considered

the past entropy function is increasing with time.

Example 4.2.

For the illustration of estimation procedure discussed in Section 2.2, we consider

the life times (in cycles) of 20 sodium sulphur batteries (see, Ansell and Ansell

(1987)). The same method is used for calculating the bootstrap estimate of the bias

and the mean-squared errors of H
∗
n(f ; t) as in the case of Example 4.1. The boot-

strap estimates of the biases and the mean-squared errors, in brackets, for H
∗
n(f ; t)

are given in Table 2. From the Table 2 it can be seen that the optimum value of

bn is 0.1 for 0.76 < t ≤ 2.1, 0.2 for 2.1 < t ≤ 7.75, 0.3 for 7.75 < t ≤ 8.14, 0.5 for

8.14 < t ≤ 11.31, 0.7 for 11.31 < t ≤ 14.46 and 0.9 for 14.46 < t ≤ 30.77. In Figure

2 dark line represents the theoretical value H(f ; t) and starred line represents the

estimator H
∗
n(f ; t). From Figure 2, we can say that for the given data the past

entropy function is increasing with time.
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5 Simulation studies

A Monte Carlo simulation study is carried out to compare the kernel estimators

Hn(f ; t) and H
∗
(f ; t) in the case of complete samples and H

∗
n(f ; t) and H

n
∗ (f ; t) in

the case of censored samples in terms of the mean-squared error. First we consider

the simulation under complete sample. The exponential distribution with parame-

ter λ = 0.6 is used for the simulation. For the simulation under complete sample,

we generated {Xi} from AR(1) with correlation coefficient ρ = 0.3. The Gaussian

kernel is used as the kernel function for the estimation. The estimates for various

values of t (4 < t < 4.8), bn and sample sizes n = 50 and n = 100 are calculated.

The ratios of mean-squared error of Hn(f ; t) to that of the H
∗
(f ; t) are computed

and are given in Table 3. From a range of bn values, we found that bn = 0.4 come

close to giving the smallest discrepancy between Hn(f ; t) and H
∗
(f ; t). In Figure

3 dark line represents the theoretical value H(f ; t), starred line represents the esti-

mator Hn(f ; t) and dotted line represents the estimator H
∗
(f ; t).

For the simulation under right censored sample, we generated {Xi} from AR(1) with

correlation coefficient ρ = 0.2 and the censoring times {Yi} were generated indepen-

dently from N(2, 1). In this case also we used the Gaussian kernel for simulation.

The estimates for various values of t(2 ≤ t ≤ 2.8), bn and sample sizes n = 50 and

n = 100 are calculated. The ratios of mean-squared error of H
∗
n(f ; t) to that of the

H
n
∗ (f ; t) for the bn values between 0.3 - 0.6 are computed and are given in Table

4. The ratios of mean-squared error of H
∗
n(f ; t) to that of the H

n
∗ (f ; t) for bn = 0.6

is very small compared to the other bn values. In Figure 4 dark line represents the

theoretical value H(f ; t), starred line represents the estimator H
∗
n(f ; t) and dotted

line represents the estimator H
n
∗ (f ; t).
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Figure 1: Plots of estimates of past entropy function for the first failure of 20 electric

carts

Figure 2: Plots of estimates of past entropy function for the life times of 20 sodium

sulphur batteries
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Figure 3: Plots of Hn(f ; t), H
∗
(f ; t) and H(f ; t) using a simulated sample of size

n=100 for bn = 0.4, λ = 0.6

Figure 4: Plots of H
∗
n(f ; t), H

n
∗ (f ; t) and H(f ; t) using a simulated sample of size

n=100 for bn = 0.6, µ = 2, σ = 1
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Table 3: Ratios of the mean-squared error of Hn(f ; t) to that of H
∗
(f ; t)

t

bn Sample 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.2 n=50 0.6129 0.6451 0.6712 0.6948 0.7161 0.7340 0.7478 0.7592 0.7723

n=100 0.2785 0.3182 0.3662 0.4235 0.4874 0.5532 0.6165 0.6748 0.7261

0.3 n=50 0.2257 0.2407 0.2560 0.2733 0.2938 0.3189 0.3494 0.3855 0.4271

n=100 0.1598 0.1805 0.2045 0.2319 0.2629 0.2970 0.3336 0.3716 0.4095

0.4 n=50 0.1528 0.1721 0.1892 0.2061 0.2254 0.2481 0.2748 0.3058 0.3413

n=100 0.1295 0.1453 0.1633 0.1838 0.2072 0.2335 0.2628 0.2952 0.3306

0.5 n=50 0.1556 0.1724 0.1905 0.2104 0.2323 0.2567 0.2842 0.3150 0.3494

n=100 0.1497 0.1669 0.1860 0.2073 0.2309 0.2571 0.2858 0.3173 0.3514
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