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ABSTRACT

In this paper, we derive some mathematical identities which involve combi-

natorial coefficients. The well known theory of two-sample U Statistics is used

to derive the identities.
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1 Introduction

Identities are useful in simplifying many algebraic expressions. They provide sim-

ple alternate expressions to solve complex algebraic expressions. Riordan (1968)

contains many such fundamental identities, Joshi and Balakrishnan (1981) provide

statistical derivations of some such identities and Baiju and Thomas (2007) describe

some identities using well established theories of order statistics and U-statistics

based on certain linear functions of order statistics.

In this paper, we derive some identities using two-sample U-statistics and or-

dered ranks. The two-sample U-statistics is described in section 2 and two-sample
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U-Statistics from which these identities emerge are described in section 3. The iden-

tities derived from mean and variance of these U-statistics is given in section 4 and

identities emerging from ordered ranks is given is section 5.

2 Definition of Two-sample U-Statistics

U-Statistics is a class of unbiased estimators of parameters of a population. They

are often used as test statistics although they emphasize estimation. Randles and

Wolfe (1979) describes the two-sample U-Statistics as follows:

Let X1, . . . , Xm and Y1, . . . , Yn be the observations of two independent random

samples drawn from cumulative distribution functions (cdf) F (x) and G(y) respec-

tively. A parameter θ is said to be estimable of degree (b, d) for distributions (F,G)

in a family F if b and d are the smallest sample sizes for which there exists an esti-

mator of θ that is unbiased for every (F,G) ∈ F . That is, there is a function h(. ; .)

such that EF,G [h(X1, ..., Xb;Y1, ..., Yd)] = θ for every (F,G) ∈ F, where h(. ; .) is

called as two-sample kernel and is symmetric in it’s Xi components and separately

symmetric in it’s Yj components. Under these conditions a two sample U-statistic,

for m ≥ b and n ≥ d has the form

U(X1, ...., Xm;Y1, ...., Yn) =




 m

b




 n

d





−1
∑

α

h(Xi1 , ..., Xib , Yj1 , ..., Yjd) ,

(2.1)

where
∑

α is the collection of all subsets of b(d) integers chosen without replacement

from the integers {1,. . . ,m} {1,. . . ,n}.

3 Some two sample U-Statistics for location problem

Suppose X1, . . . , Xm and Y1, . . . , Yn are independent random samples from pop-

ulations with absolutely continuous distribution functions F(x) and G(y) having

probability density functions (pdf) f(x) and g(y) respectively. Then the two sample

location problem is to test H0 : F (x) ≡ G (x) against the alternativeH1 : G (x) =
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F (x− θ), θ>0 or θ<0 or θ 6=0, -∞<x<∞, that is, two distributions differ only in

their location parameter.

Suppose b and d are some fixed positive integers such that 1 ≤ b ≤ m and

1 ≤ d ≤ n. For testing H0 : θ = 0 againstH1 : θ > 0, Shetty and Bhat (1993)

proposed

SB1 = [(mb )(nd )]−1
∑

α

φ1 (Xi1 , ..., Xib ;Yj1 , ..., Yjd) , (3.1)

where
∑

αis sum over all (mb )(nd )possible sub samples,

φ1(X1, ..., Xb;Y1, ..., Yd) =





1 , if M1 ≤M2

0, otherwise
, (3.2)

M1= median of (X1, ..., Xb), M2= median of (Y1, ..., Yd), and b and d are odd positive

integers.

Shetty and Bhat (1994) proposed

SB2 = [(mb )(nd )]−1
∑

α

φ2 (Xi1 , ..., Xib ;Yj1 , ..., Yjd) (3.3)

and

SB3 = [(mb )(nd )]−1
∑

β

φ3 (Xi1 , ..., Xid ;Yj1 , ..., Yjb) , (3.4)

where
∑

βis sum over all (md )(nb )possible sub samples,

φ2(X1, ..., Xb;Y1, ..., Yd) =





1, if X(b) ≤M2

0, otherwise
(3.5)

φ3(X1, ..., Xb;Y1, ..., Yd) =





1, if M3 ≤ Y(1)
0, otherwise

(3.6)

M3= median of (X1, ..., Xd), X(b)= maximum of (X1, ..., Xb), Y(1)= minimum of

(Y1, ..., Yb) and d is an odd positive integer.

Shetty et al.(1997) proposed a two-sample U-Statistic with kernel being the

function of sample quantiles which is given by

SB4 = [(mb )(nd )]−1
∑

α

φ4 (Xi1 , ..., Xib ;Yj1 , ..., Yjd) (3.7)
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and

φ4(X1, ..., Xb;Y1, ..., Yd) =





1 if X(k1)b ≤ Y(k2)d
0 otherwise

(3.8)

where,

k1 =





bβ, if bβ is an integer

[bβ] + 1, if bβ is not an integer ,

k2 =





dγ, if dγ is an integer

[dγ] + 1, if dγ is not an integer ,

βth quantile of a sample size n is defined as the rthorder statistic, where

r =





nβ, if nβ is an integer

[nβ] + 1, if nβ is not an integer ,

X(k1)b= kth1 order statistic of (X1, ..., Xb) and Y(k2)d=k
th
2 order statistic of (Y1, ...., Yd).

All these two sample U-Statistics are expressed in alternative forms using ordered

ranks and their properties are also studied. An extensive study of these statistics is

carried out in Bhat (1996).

4 Identities from mean and variance of two sample U-

Statistics

In this section, we present some identities and their proofs based on mean and

variance of two sample U statistics defined in section 3.

Identity 4.1.

(
d!/(q!)2

) b∑

i=p+1


 b

i


B (i+ q + 1, b−i+ q + 1) = 1/2 (4.1)

for b and d being odd positive integers.

Proof.
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The mean of SB1 under H0 is obviously 1/2.

But it is also given by

E (SB1) =

∫ ∞

−∞
FM1 (x) d FM2 (x) ,

where

FM1(x) =
b∑

i=p+1


 b

i


 [F (x)]i

[
F (x)

]b−i
,

FM2(x) =
d∑

i=q+1


 d

i


 [F (x)]i

[
F (x)

]d−i
,

p = (b− 1)/2, q = (d− 1)/2 and F (x) = 1−F (x) .

Therefore,

E (SB1) =

∫ ∞

−∞

b∑

i=p+1


 b

i


 [F (x)]i

[
F (x)

]b−i
(x)

(
d!/(q!)2

)
[F (x)]q

[
F (x)

]q
dF (x)

=
b∑

i=p+1


 b

i


(d!/(q!)2

) ∫ ∞

−∞
[F (x)]i+q

[
F (x)

]b−i+q
dF (x)

=
(
d!/(q!)2

) b∑

i=p+1


 b

i


B (i+ q + 1, b−i+ q + 1) ,

where B(x, y) = Γ (x) Γ (y) / Γ(x+ y). Therefore, we get the identity (4.1).

Identity 4.2.

b2ζ10(SB1)/
(
d2ζ01(SB1)

)
= 1, (4.2)

where

ζ10(SB1) = cov [φ1(X1, ..., Xb;Y1, ..., Yd) , φ1(X1, Xb+1, ..., X2b−1;Y1, ...., Y2d)]

and

ζ01(SB1) = cov [φ1(X1, ..., Xb;Y1, ..., Yd) , φ1(Xb+1, ..., X2b;Y1, Yd+1, ..., Y2d−1)] .
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Proof. While deriving the asymptotic variance of SB1 under the null hypothesis,

certain expressions are evaluated. We have

ζ10(SB1) = E [φ1(X1, ..., Xb;Y1, ..., Yd) , φ1(X1, Xb+1, ..., X2b−1;Yd+1, ...., Y2d)]−E [SB1]
2

=

∫ ∞

−∞
P 2 (med (x,X2, ..., Xb) ≤M2) dF (x)− (1/4) . (4.3)

Also

P (med (x,X2, ..., Xb) ≤M2) = d!(b− i)![K1 + · · ·+Kb], (4.4)

where

K1 = P [x ≤ Y1, X2 ≤ X3 ≤ ... ≤ x ≤ ... ≤ Xb, Y2 ≤ Y3 ≤ ... ≤ Y1 ≤ ... ≤ Yd],

x in the middle position and Y1 in the middle position.

Ki = P [Xi ≤ Y1, X2 ≤ X3 ≤ .... ≤ Xi ≤ .... ≤ x, Y2 ≤ Y3 ≤ ... ≤ Y1 ≤ .... ≤ Yd, ]

for i = 2, ..., b and Xi in the middle position and Y1 in the middle position.

After evaluating the expressions forK1, . . . ,Kb and substituting in (4.4) and (4.3)

we get

ζ10(SB1) = (d!/(b− 1)!)2K (b, d) /


p!2q!2(b+ d− 1)


 b+ d− 2

p+ q






2

, (4.5)

where

K(b, d) =

p+q∑

i=0


 b+ d− 1

i




2

B(2i+ 1, 2b+ 2d− 2i− 1)

+

p+q∑

i 6=i′=1

∑

 b+ d− 1

i




 b+ d− 1

i
′


B(i+ i′ + 1, 2b+ 2d− i− i′ − 1)− (1/4) .

Similarly,

ζ01(SB1) = E[φ1(X1, ..., Xb;Y1, ..., Yd) , φ1(Xb+1, ..., X2b ; Y1, Yd+1, ..., Y2d−1]−(1/4)
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= (b!/(d− 1)!)2K (b, d) /


p!2q!2(b+ d− 1)


 b+ d− 2

p+ q






2

. (4.6)

Therefore

ζ10(SB1)/ζ01(SB1) = (d!/(b− 1)!)2 / (b!/(d− 1)!)2 = (d/b)2 . (4.7)

Hence, we get the identity (4.2).

Identity 4.3.

ζ10 (SB2)− ζ01 (SB3) = 0 , (4.8)

where

ζ10(SB2) = cov [φ2(X1, ..., Xb;Y1, ..., Yd) , φ2(X1, Xb+1, ..., X2b−1;Yd+1, ...., Y2d)]

and

ζ01(SB3) = cov [φ3(X1, ..., Xb;Y1, ..., Yd) , φ3(Xb+1, ...., X2b;Y1, Yd+1...., Y2d−1)] .

Proof. Under the null hypothesis

E (SB2) =

∫ ∞

−∞
[F (x)]b dFM2(x)

=
(
d!/(q!)2

)
B (b+ q + 1, q + 1) (4.9)

and

E (SB3) =

∫ ∞

−∞

[
F (x)

]b
dFM3(x),

where

FM3(x) =
d∑

i=q+1


 d

i


 [F (x)]i

[
F (x)

]d−i
.

Therefore ,

E(SB3) =
(
d!/(q!)2

) ∫ ∞

−∞
[F (x)]q

[
F (x)

]b+q
dF (x)

=
(
d!/(q!)2

)
B (q + 1, b+ q + 1) . (4.10)

Since the kernel φ2(.; .)can be obtained from φ3(.; .) by replacing(Xi)’s by (−Xi)’s,

(Yj)’s by (−Yj)’s and interchanging labels we getE(SB2) = E(SB3).
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Also,

ζ10(SB2) = E (φ2(X1, ..., Xb;Y1, ..., Yd) , φ2(X1, Xb+1, ..., X2b−1;Yd+1, ...., Y2d))−E2[SB2]

=

∫ ∞

−∞
P 2 (max (x,X2, ..., Xb) ≤M2) dF (x)− E2(SB2) (4.11)

and

ζ01(SB3) = E (φ3(X1, ..., Xd;Y1, ..., Yb) , φ3(Xd+1, ..., X2d;Y1, Yb+1, ...., Y2b−1))−E2[SB3]

=

∫ ∞

−∞
P 2 (M3 ≤ min (y, Y2, ..., Yb)) dF (x)− E2(SB3). (4.12)

Since E[SB2] = E[SB3] under H0 and from symmetry, we have

P (max (x,X2, ..., Xb) ≤M2) = P (M3 ≤ min (y, Y2, ..., Yd)) .

From (4.9) through (4.12) we get the identity (??).

Identity 4.4.

k
(
d
k

) b∑

i=k

(
b
i

)
B (i+ k, 2b− i− k + 1) = 1/2 (4.13)

or

[d!/ ((k − 1)!(d− k)!)]
∑b

i=k(
b
i) B (i+ k, 2b− i− k + 1) = 1/2.

Proof. Under the null hypothesis

E(SB4) = P (X(ki) ≤ Y(k2))

=

∫ ∞

−∞
P (X(ki) ≤ y)dFY(k2)(y)

= k2

(
d
k2

) b∑

i=k1

(
b
i

)
B (i+ k2, b+ d− i− k2 + 1)) , (4.14)

When b = d and k1 = k2 = k, we have E(SB4) = 1/2. Therefore we get identity

(4.13).

Identity 4.5. For i = 1, 3, 5, ..., b+ d− 1,

e (SB1 (b, d)) /e (SB1 (i, b+ d− i)) = 1, (4.15)

where

e (SB1 (b, d)) =
[
(b!d!) /

(
(p!q!)2 σb,d

)] ∫ ∞

−∞
[F (x)]p+q

[
F (x)

]p+q
[f (x)]2 dx,
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σ2b,d = (d!)2 (b!)2K (b, d) /


(p!)4 (q!)4 (b+ d− 1)2


 b+ d− 2

p+ q




2

λ (1− λ)




and

0 < λ =
lim

N →∞
(m/N) < 1, N = m+ n.

Proof. Under the null hypothesis

σ2b,d =
(
b2/λ

)
ζ10 (SB1) +

(
d2/ (1− λ)

)
ζ01 (SB1)

= b2ζ10 (SB1) / (λ (1− λ)) or d2ζ01 (SB1) / (λ (1− λ)) by identity 4.2.

It is worth to note that e (SB1 (b, d)) depends on (b+ d) and underlying distribu-

tion F (x). Thus for 1 ≤ b ≤ m, 1 ≤ d ≤ n, b, d being odd positive integers,

given F (x), we get e (SB1 (b, d)) = e (SB1 (i, b+ d− i)) fori = 1, 3, 5, ..., b + d − 1.

Therefore, we get identity (4.15).

5 Identities based on Ordered Ranks

In this section, we present some identities based on the ordered ranks of two sample

U statistics defined in section 3. Suppose that X(1) ≤ X(2) ≤ ....... ≤ X(m) and

Y(1) ≤ Y(2) ≤ ....... ≤ Y(n) are the order statistics corresponding to X and Y

sample observations respectively. Let R(i)

(
S(j)

)
be the rank of X(i)

(
Y(j)

)
in the

joint ranking of X and Y observations. Then we have the following identities.

Identity 5.1.
∑m

i=1

∑q
j=0


 i− 1

p




 m− i

p




 R(i) − i

q − j




 n−R(i) + i

q + 1 + j




=
n∑

j=1

p∑

i=0


 j − 1

q




 n− j

q




 S(j) − j

p+ 1 + i




 m− S(j) + j

p− i


 . (5.1)

Proof. Choose a sub sample of size b from the X sample such that X(i) is the

median. For a fixed i, this can be done in


 i− 1

p




 m− i

p


 ways. Similarly

choose a sub sample of size d from Y sample such that Y(j) is the median and is
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greater thanX(i). Each such sub-sample pair results inφ1 (. ; .) = 1. Using the

fundamental rules of counting, we get the identity (5.1).

Identity 5.2.

 m

b




 n

d


SB2 =

n∑

j=1


 j − 1

q




 n− j

q




 S(j) − j

b


 . (5.2)

Proof. Choose a sub sample of size d from the Y sample such that Y(j) is the

median. For a fixed j this can be done in


 j − 1

q




 n− j

q


 ways. The number

of X observations less than Y(j) will be
(
S(j) − j

)
. A sub sample of size b from the

X observations can be chosen in


 S(j) − j

b


 ways and we get identity (5.2).

Identity 5.3.

 m

d




 n

b


SB3 =

m∑

i=1


 i− 1

q




 m− i

q




 n−R(i) + i

b


 . (5.3)

Proof. For a fixedi, X(i)can be chosen as median of sub sample of size d from

Xobservations in


 i− 1

q




 m− i

q


 ways. The number of Y observations greater

than X(i) is
(
n−R(i) + i

)
. A sub sample of size b from these Y observations can be

chosen in


 n−R(i) + i

b


 ways. For each i,


 i− 1

q




 m− i

q




 n−R(i) + i

b




sub-sample pairs for which φ3 (. ; .) = 1. Then by the fundamental rule of counting,

we get the identity (5.3).

Identity 5.4.

∑m
i=1

∑k2−1
j=0


 i− 1

k1 − 1




 m− i

b− k1




 R(i) − i

k2 − j − 1




 n−R(i) + i

d− k2 + j + 1




=
n∑

j=1

k1−1∑

i=0


 j − 1

k2 − 1




 n− j

d− k2




 S(j) − j

b− k1 + i+ 1




 m− S(j) + j

k1 − i− 1


 . (5.4)

Proof. Choose a sub sample of size b from the X sample such that X(i) is the

kth1 order statistic ((bβ)thquantile). For a fixed i, this can be done in


 i− 1

k1 − 1



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
 m− i

b− k1


ways. Now choose a sub sample of size d from Y sample such that Y(j)

is the kth2 order statistic ((dγ)thquantile) and is greater than X(i). Each such sub-

sample pair results in φ4 (. ; .) = 1. The Y(j) can be selected in


 R(i) − i

k2 − j − 1




 n−R(i) + i

d− k2 + j + 1




ways. Thus using the fundamental rules of counting, we get the identity (5.4).
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